首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranotropic effects of the antibacterial agent Triclosan   总被引:6,自引:0,他引:6  
Triclosan is a broad-spectrum hydrophobic antibacterial agent used in dermatological preparations and oral hygiene products. To gain further insight into the mode of action of Triclosan we examined its effects on membranes by performing leakage titrations of different oral bacteria and studying its interaction with model membranes through the use of different biophysical techniques. There was negligible efflux of intracellular material from Streptococcus sobrinus at the minimal inhibitory concentration of Triclosan; whatever leakage did occur commenced only at much higher concentrations. In contrast, no leakage was observed at even the minimal bactericidal concentration for Porphyromonas gingivalis. Triclosan decreased the onset temperature of the gel to liquid-crystalline phase transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-3-[phospho-rac-glycerol] membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Steady-state fluorescence anisotropy measurements of different phospholipid/Triclosan samples using 3-(p-6-phenyl-1,3,5-hexatrienyl)-phenylpropionic acid were consistent with the calorimetric data. Incorporation of increasing amounts of Triclosan into 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) vesicles induced the nonlamellar H(II) hexagonal phase at low temperatures and new immiscible phases at temperatures below the main transition of DEPE. Taking these results together suggests that the antibacterial effects of Triclosan are mediated at least in part through its membranotropic effects, resulting in destabilized structures which compromise the functional integrity of cell membranes without inducing cell lysis.  相似文献   

2.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

3.
(+)-Totarol, a diterpene extracted from Podocarpus totara, has been reported as a potent antioxidant and antibacterial agent. Although the molecular mechanism of action of this hydrophobic molecule remains unknown, recent work made in our laboratory strongly suggests that it could be lipid-mediated. Since (+)-totarol contains a phenolic ring, we have studied the intrinsic fluorescent properties of this molecule, i.e., quantum yield, lifetime, steady-state anisotropy and emission spectra, both in aqueous and in phospholipid phases, in order to obtain information on the interaction and location of (+)-totarol in biomembrane model systems. The phospholipid/water partition coefficient of (+)-totarol was found to be very high (K(p)=1.8x10(4)), suggesting that it incorporates very efficiently into membranes. In order to estimate the transverse location (degree of penetration) of the molecule in the fluid phase of DMPC model membranes, the spin labelled fatty acids 5-NS and 16-NS were used in differential quenching experiments. The results obtained show that (+)-totarol is located in the inner region of the membrane, far away from the phospholipid/water interface. Since (+)-totarol protects against oxidative stress, its interaction with an unsaturated fatty acid, trans-parinaric acid, was studied using fluorescence resonance energy transfer. No significant interactions were observed, molecules of trans-parinaric acid distributing themselves randomly amongst those of (+)-totarol in the phospholipid membrane.  相似文献   

4.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

5.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

6.
The (Na+ + Mg2+)-ATPase purified from Acholeplasma laidlawii B membranes was reconstituted into large, unilamellar vesicles formed from dimyristoylphosphatidylcholine (DMPC) and varying amounts of cholesterol or epicholesterol. The ATP hydrolytic activity of the reconstituted enzyme was then determined over a range of temperatures and the phase state of the DMPC in the ATPase-containing vesicles was characterized by high-sensitivity differential scanning calorimetry. In the vesicles containing only DMPC, the ATPase activity is higher in association with lipids in the liquid-crystalline state than with gel-state phospholipids, resulting in a curvilinear, biphasic Arrhenius plot with a pronounced change in slope at the elevated gel to liquid-crystalline phase transition temperature of the DMPC. The incorporation of increasing amounts of cholesterol into the DMPC vesicles results in a progressively greater degree of inhibition of ATPase activity at higher temperatures but a stimulation of activity at lower temperatures, thus producing Arrhenius plots with progressively less curvature and without an abrupt change in slope at physiological temperatures. As cholesterol concentration in the ATPase-DMPC vesicles increases, the calorimetric phase transition of the phospholipid is further broadened and eventually abolished. The incorporation of epicholesterol into the DMPC proteoliposomes results in similar but less pronounced effects on ATPase activity, and its effect on the phase behavior of the DMPC-ATPase vesicles is also similarly attenuated in comparison with cholesterol. Moreover, cholesterol added to the purified enzyme in the absence of phospholipid does not show any significant effect on either the activity or the temperature dependence of the detergent-solubilized ATPase. These findings are consistent with the suggestion that cholesterol exerts its effect on the ATPase activity by altering the physical state of the phospholipid, since the ordering effect of cholesterol (or epicholesterol) on liquid-crystalline lipid results in a reduction of ATPase activity while the disordering of gel-state lipid results in an increase in activity.  相似文献   

7.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into alpha-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D(2)O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1>aurein 1.2>citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1>aurein 1.2 congruent with citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

8.
(+)-Totarol, a diterpenoid isolated from Podocarpus spp., is a potent antioxidant and antibacterial agent. Although the mechanism of action of this hydrophobic molecule is poorly understood, recent work from our laboratories suggests that it could be due to membranotropic interactions. The location of (+)-totarol in membranes and its interaction with membrane components is therefore of considerable interest. High resolution magic angle spinning (MAS) natural abundance 13C nuclear magnetic resonance studies were undertaken to assess the location of (+)-totarol in model membranes composed of egg yolk phosphatidylcholine (EYL). 13C spin-lattice relaxation times (T(1)) of both the phospholipid and (+)-totarol molecules in the presence of Gd(3+) were measured to obtain information on molecular distances. Our results indicate that (+)-totarol is situated in the upper region of the membrane, with its hydroxyl group located in the vicinity of the C-3/4 carbon atoms of the phospholipid acyl chain, and nearly perpendicular with respect to the phospholipid acyl chain axis. Such a location of (+)-totarol in the membrane would be expected to compromise the functional integrity of the membrane and account, at least in part, for its antibacterial effects.  相似文献   

9.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into α-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D2O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1 > aurein 1.2 > citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1 > aurein 1.2 ≅ citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

10.
Model membranes composed of 1-palmitoyl-2-oleylphosphatidylcholine (POPC) and bovine brain galactocerebroside (BOV-CER) have been studied by differential scanning calorimetry (DSC). POPC is a naturally occurring phospholipid, and BOV-CER is a major component of the myelin membrane. POPC and BOV-CER are immiscible in the gel state over the composition range 0-70 mol% BOV-CER. At most POPC/BOV-CER ratios, broad dual-peaked acyl chain transitions are observed, characteristic of the co-existence of a fluid POPC-rich liquid-crystalline phase and a solid BOV-CER-rich gel phase over a wide temperature range.  相似文献   

11.
Coexisting gel and liquid-crystalline phospholipid phase domains can be observed in synthetic phospholipid vesicles during the transition from one phase to the other and, in vesicles of mixed phospholipids, at intermediate temperatures between the transitions of the different phospholipids. The presence of cholesterol perturbs the dynamic properties of both phases to such an extent as to prevent the detection of coexisting phases. 6-Lauroyl-2-dimethylaminopahthalene (Laurdan) fluorescence offers the unique advantage of well resolvable spectral parameters in the two phospholipid phases that can be used for the detection and quantitation of coexisting gel and liquid-crystalline domains. From Laurdan fluorescence excitation and emission spectra, the generalized polarization spectra and values were calculated. By the generalized polarization phospholipid phase domain coexistence can be detected, and each phase can be quantitated. In the same phospholipid vesicles where without cholesterol domain coexistence can be detected, above 15 mol% and, remarkably, at physiological cholesterol concentrations, > or = 30 mol%, no separate Laurdan fluorescence signals characteristic of distinct domains can be observed. Consequences of our results on the possible size and dynamics of phospholipid phase domains and their biological relevance are discussed.  相似文献   

12.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 degrees C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

13.
Farnesol interacts with membranes in a wide variety of biological contexts, yet our understanding of how it affects lipid bilayers is not yet complete. This study investigates how the 15-carbon isoprenoid, farnesol, influences the phase behaviour, lateral organization, and mechanical stability of dimyristol phosphatidylcholine (DMPC) model membranes. Differential scanning calorimetry (DSC) of multilamellar DMPC-farnesol mixtures (up to 26 mol% farnesol) demonstrates how this isoprenoid lowers and broadens the gel-fluid phase transition. A gel-fluid coexistence region becomes progressively more dominant with increasing farnesol concentration and at concentrations of and greater than 10.8 mol%, an upper transition emerges at about 35 °C. Atomic force microscopy images of supported farnesol-DMPC bilayers containing 10 and 20 mol% farnesol provide structural evidence of gel-fluid coexistence around the main transition. Above this coexistence region, membranes exhibit homogeneous lateral organization but at temperatures below the main gel-fluid coexistence region, another form of phase coexistence is observed. The solid nature of the gel phase is confirmed using micropipette aspiration. The combined thermodynamic, structural, and mechanical data allow us to construct a phase diagram. Our results show that farnesol preferentially partitions into the fluid phase and induces phase coexistence in membranes below the main transition of the pure lipid.  相似文献   

14.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

15.
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.  相似文献   

16.
S W Tendian  B R Lentz 《Biochemistry》1990,29(28):6720-6729
The temperature-composition phase diagram of mixed dimyristoylphosphatidylserine (DMPS) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles was determined in the presence and absence of bound bovine prothrombin by monitoring the phospholipid order-disorder phase separation using diphenylhexatriene (DPH) fluorescence anisotropy. The shape of the membrane temperature-composition diagram was essentially unaltered by the binding of prothrombin in the presence of Ca2+ although the two-phase (gel/fluid) region was slightly narrowed and shifted by 1-10 degrees C to higher temperatures. This result does not support the popular idea that extensive domains rich in negatively charged phospholipid are induced in response to prothrombin binding. Instead of implying domain formation, our results demonstrate that the observed increase in melting temperature associated with binding of prothrombin to acidic phospholipid membranes can be accounted for by the observed altered membrane order both in the fluid and in the solid lamellar phases. The membrane order in the liquid-crystalline phase increased with increased acidic lipid content, and much more so for DMPS than for dipentadecanoylphosphatidylglycerol (DC15PG). These results demonstrate that simple shifts in membrane phase behavior cannot be properly interpreted to prove the existence of charged lipid domains. In addition, we report the unexpected observation that prothrombin increased the anisotropy of DPH in DMPS/DMPC vesicles in the liquid-crystalline phase in the absence of Ca2+ as well as in its presence. This effect was seen to a lesser extent and only at a much higher charged-lipid content for DC15PG/DMPC vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

18.
The interaction of the synthetic antimicrobial peptide P5 (KWKKLLKKPLLKKLLKKL-NH2) with model phospholipid membranes was studied using solid-state NMR and circular dichroism (CD) spectroscopy. P5 peptide had little secondary structure in buffer, but addition of large unilamellar vesicles (LUV) composed of dimyristoylphosphatidylcholine (DMPC) increased the β-sheet content to ~20%. Addition of negatively charged LUV, DMPC–dimyristoylphosphatidylglycerol (DMPG) 2:1, led to a substantial (~40%) increase of the α-helical conformation. The peptide structure did not change significantly above and below the phospholipid phase transition temperature. P5 peptide interacted differently with DMPC bilayers with deuterated acyl chains (d54-DMPC) and mixed d54-DMPC–DMPG bilayers, used to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC vesicles, P5 peptide had no significant interaction apart from slightly perturbing the upper region of the lipid acyl chain with minimum effect at the terminal methyl groups. By contrast, in the DMPC–DMPG vesicles the peptide increased disorder throughout the entire acyl chain of DMPC in the mixed bilayer. P5 promoted disordering of the headgroup of neutral membranes, observed by 31P NMR. However, no perturbations in the T 1 relaxation nor the T 2- values were observed at 30°C, although a slight change in the dynamics of the headgroup at 20°C was noticeable compared with peptide-free vesicles. However, the P5 peptide caused similar perturbations of the headgroup of negatively charged vesicles at both temperatures. These data correlate with the non-haemolytic activity of the P5 peptide against red blood cells (neutral membranes) while inhibiting bacterial growth (negatively charged membranes).  相似文献   

19.
The interaction of all-trans-retinoic acid and all-trans-retinol with dielaidoylphosphatidylethanolamine has been studied by differential scanning calorimetry and 31P-NMR spectroscopy. Increasing concentrations of all-trans-retinoic acid up to a mol fraction of 0.09 were found to induce shifts to lower temperatures of both the L beta to L alpha and L alpha to hexagonal-HII phase transitions, with a slight decrease in the enthalpy change of the transitions. At higher concentrations no further effects on the transitions were observed, and this is interpreted as indicative of a limited miscibility of retinoic acid with the phospholipid. 31P-NMR spectroscopy confirmed that the L alpha to hexagonal-HII phase transition was shifted to lower temperatures in the presence of retinoic acid. On the other hand increasing concentrations of all-trans-retinol up to a mol fraction of 0.166, induced a progressive shift of the L beta to L alpha and the L alpha to hexagonal-HII phase transitions to lower temperatures. At higher concentrations the main gel to liquid-crystalline phase transition was further displaced to lower temperatures and the lamellar to hexagonal-HII phase transition was not observed in the thermograms. 31P-NMR spectroscopy indicated that retinol was able of inducing the phospholipid to adopt the hexagonal-HII phase at temperatures even below the main gel to liquid-crystalline phase transition temperature of the pure phospholipid.  相似文献   

20.
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [(14)C]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [(14)C]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains ((14)C atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosity of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号