首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaCN-induced chemical hypoxia is associated with altered gene expression   总被引:2,自引:0,他引:2  
Sodium cyanide (NaCN)-induced chemical hypoxia is known to increase intracellular free calcium concentration and reduce cell survival, but its effect on gene expression has not been studied. In this study, we designed primers to conduct a rapid and reliable assay for the expression of mRNA of inducible nitric oxide synthase (iNOs), tumor suppressor protein p53, Bcl-2, heat shock protein 70 (HSP-70), and -actin in human intestinal epithelial T84 cells and Jurkat T cells. NaCN-induced chemical hypoxia increased iNOs and HSP-70 mRNA in both types of cells, whereas p53 and Bcl-2 mRNA were singularly induced in T84 cells and Jurkat T cells, respectively. In both cell types, treatment of hypoxic cells with a reversible selective iNOs inhibitor, N-nitro-L-arginine (LNNA), blocked iNOs, Bcl-2, and HSP-70 mRNA, but increased p53. The NaCN-induced hypoxia was also found to increase caspase-3 cellular activity in both cell types. Treatment with LNNA alone decreased the basal caspase-3 cellular activity. A prior treatment of LNNA significantly inhibited the NaCN-induced increase in the cellular activity of this apoptotic enzyme. This is the first report to show that NaCN-induced chemical hypoxia alters both stress-related gene expression and caspase-3 cellular activity and can be regulated by the iNOs inhibitor LNNA. Since NaCN has been included in the National chemical terrorism threat list, by the US Department of Defense, our studies provide useful insight in the development of molecular sensors to detect early exposure to this chemical terrorism threat.  相似文献   

2.

Background

To determine the correlation of cyclin-dependent kinase inhibitor 1B (p27) expression with clinicopathologic features in nasopharyngeal carcinoma (NPC), including patient prognosis.

Methods

Real-time PCR and immunohistochemistry were used to examine the mRNA and protein expressions of p27 in NPC and nasopharyngeal tissues. The relationship of p27 expression levels with clinical features and prognosis of NPC patients was analyzed.

Results

The expression level of p27 mRNA was markedly lower in NPC tissues than that in the nasopharyngeal tissues (P?=?0.0006). Specific p27 protein staining by immunohistochemistry was found in the nuclei and cytoplasm of nasopharyngeal and malignant epithelial cells but decreased expression was observed in NPC samples compared to normal epithelium samples (P?=?0.002). In addition, low levels of p27 protein were inversely correlated with the status of T classification (p?=?0.002) and clinical stage (p?=?0.019) of NPC patients. Patients with lower p27 expression had a significantly shorter overall survival time than did patients with high p27 expression. Multivariate analysis suggested that the level of p27 expression was not an independent prognostic indicator (p?=?0.682) for NPC survival.

Conclusion

Low level of p27 expression is a potential unfavorable prognostic factor for patients with NPC.

Virtual slides

The virtual slide (s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1915282782109343.
  相似文献   

3.

Background

Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling.

Methods

The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576.

Results

Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576.

Conclusions

These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.  相似文献   

4.
5.
6.
The expression of hepatic calcium-binding protein regucalcin mRNA in fetal rats was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb with complete open reading frame). Hepatic regucalcin mRNA levels were progressively increased with fetal development; the mRNA was clearly expressed at 15 and 21 days of pregnancy but only slightly at the 8 days. Meanwhile, -actin mRNA levels in the fetal liver were remarkable at 8 and 15 days of pregnancy. The fetal liver regucalcin mRNA levels at 15 days of pregnancy were significantly decreased by overnight-fasting of maternal rats. The oral administration of calcium chloride (50 mg Ca/100 g body weight) to maternal rats at 15 days of pregnancy caused a remarkable elevation (about 2 fold) of regucalcin mRNA levels in the fetal liver; this increase was seen 60 and 180 min after the calcium administration. After birth, regucalcin mRNA was increasingly expressed in the livers of newborn and weanling rats, while hepatic -actin mRNA expression was not appreciably altered with increasing ages. These findings demonstrate that the expression of hepatic regucalcin mRNA is increased with fetal development, and that the gene expression may be stimulated by the ingestion of dietary calcium.  相似文献   

7.
Oh S  Ho IK 《Neurochemical research》1999,24(12):1603-1609
Effects of continuous pentobarbital administration on binding characteristics of [3H]muscimol were examined by autoradiography, and levels of GABAA receptor 2-subunit mRNA were investigated by in situ hybridization histochemistry in the rat brain. In order to eliminate the induction of hepatic metabolism by systemic administration of pentobarbital, an i.c.v. infusion model of tolerance to and withdrawal from pentobarbital was used. An experimental model of barbiturate tolerance and withdrawal was developed using i.c.v. infusion of pentobarbital (300 g/10 l/hr for 7 days) by osmotic minipumps and abrupt withdrawal from pentobarbital. The levels of [3H]muscimol binding were elevated in cingulate of frontal cortex (46%) and granule layer of cerebellum (32%) of rats 24-hr after withdrawal from pentobarbital, while it was only elevated in cingulate (58%) of tolerant rats. The GABAA receptor 2-subunit mRNA was increased in the withdrawal rats only: in the cortex (9–14%), hippocampus (15–21%), inferior colliculus (21%), and granule layer of cerebellum (24%). These results show the involvement of GABAA receptor and its 2-subunit up-regulations in pentobarbital withdrawal rats, and suggest that the levels of [3H]muscimol binding and GABAA receptor 2-subunit mRNA are altered in a region-specific manner during pentobarbital withdrawal.  相似文献   

8.
9.
Objectives: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins.

Methods: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP).

Results: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling.

Conclusion: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.  相似文献   


10.
Background: This study is to investigate the roles of muscarinic receptor 3 (M3 receptor) in the effect of penehyclidine hydrochloride (PHC) upregulated beta-arrestin-1 expression in lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cell (HPMVEC).

Methods: HPMVECs were transfected with a shRNA-containing plasmid that specifically targets M3 receptor mRNA. Cells were collected to measure F-actin contents, levels of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as changes of F-actin cytoskeleton arrangement by Laser scanning confocal. Beta-arrestin-1 protein expressions were determined by Western blot and beta-arrestin-1 mRNA expressions were measured by Real-time PCR.

Results: Similar to normal cells, PHC could also increase F-actin contents and beta-arrestin-1 expressions, reduce ICAM-1 and VCAM-1 expressions, and inhibit LPS-stimulated reorganization of F-actin and formation of stress fiber in M3 receptor shRNA group. Compared with normal cells, F-actin cytoskeleton was neat, ICAM-1 and VCAM-1 expressions were decreased, as well as F-actin contents were increased in M3 receptor shRNA group. However, there were no differences in beta-arrestin-1 expressions between normal cell groups and M3 receptor shRNA groups.

Conclusion: These results indicate that M3 receptor plays an important role in pulmonary microvascular endothelial barrier function, and knock-out of M3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. However, upregulative effect of PHC on beta-arrestin-1 expression is independent with presence of M3 receptor.  相似文献   


11.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   

12.
We have isolated a cDNA clone from rat brain using a human platelet 2-adrenergic receptor genomic clone as a probe. Comparison of the deduced amino acid sequence (450 residues) corresponding to the rat brain cDNA with that of the human platelet and human kidney 2-adrenergic receptors showed 84% and 44% sequence similarity, respectively. The major sequence difference between the rat brain and human platelet proteins, was a stretch of 48 amino acids within the third cytosolic loop in which the similarity was only 42%. Analysis of the 48 amino acid-region indicated that the two receptors significantly differ in terms of their primary amino acid sequence and the predicted secondary and tertiary structural features. There was no sequence similarity between the human platelet and rat brain clone over the 177 bases of 3-noncoding sequence and a less than 50% similarity over a stretch of 210 nucleotides in the 5-untranslated region. Southern-blot analysis with a human platelet 2-adrenergic receptor probe revealed the existence of a single 5.2 kb restriction fragment (KpnI/SacI) in both human and rat genomic DNA; the rat brain 2-receptor probe, however, hybridized to a single 1.9 kb band in rat DNA. Northern-blot analysis of rat brain poly(A+) RNA with the rat brain cDNA probe under stringent hybridization conditions revealed a single 4.5 kb mRNA; none was detected by the human platelet receptor probe. The rat brain 4.5 kb mRNA was not detected in any (other than brain) tested rat tissues utilizing either rat brain or human platelet DNA probes. The rat brain cDNA was expressed in a mammalian cell line (COS-2A) and found to bind the 2-adrenergic antagonist [3H]yohimbine; based on the binding-affinity for prazosin, the presently cloned receptor was pharmacologically closer to the 2A subclass. We conclude that the rat brain cDNA encodes a new 2-adrenergic receptor subtype that may be brain-specific.Abbreviations G protein guanine nucleotide-binding proteins - cA2-47 2-adrenergic receptor cDNA from rat brain - SSC (1X SSC contains 0.15 M NaCl, 15 mM Na3citrate, pH 7.0)  相似文献   

13.
In zebra finches, the vocal organ (syrinx) is larger in males than in females. Specific details about the mechanisms responsible for this dimorphism are not known, but may involve sex differences in steroid hormone action early in post-hatching development. The distribution of androgen receptor (AR), aromatase (AROM), estrogen receptor (ER), and estrogen receptor (ER) mRNAs was examined at post-hatching days 3, 10 and 17. A low level of AR was equivalently expressed in the syrinx muscles of both sexes at all three ages. We detected no specific expression of AROM or ER mRNAs. In contrast, ER mRNA was detected in chondrocytes of the forming bone. The density of this expression increased with age as the chondrocytes hypertrophied, but did not differ between the sexes. Taken together, these data suggest that estrogens may act on cartilage/bone, and androgens may act on muscle fibers in early post-hatching development to influence syrinx morphology. However, the lack of a sex difference in steroid receptor mRNA expression in the syrinx suggests that, similar to the forebrain regions that control song, the interaction of androgens and estrogens with their receptors is not sufficient to induce full sexual differentiation of this organ.  相似文献   

14.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

15.

Background

Glutamate (Glu) is essential to central nervous system function; however excessive Glu release leads to neurodegenerative disease. Strategies to protect neurons are underdeveloped, in part due to a limited understanding of natural neuroprotective mechanisms, such as those present in the suprachiasmatic nucleus (SCN). This study tests the hypothesis that activation of ERK/MAPK provides essential protection to the SCN after exposure to excessive Glu using the SCN2.2 cells as a model.

Methodology

Immortalized SCN2.2 cells (derived from SCN) and GT1-7 cells (neurons from the neighboring hypothalamus) were treated with 10 mM Glu in the presence or absence of the ERK/MAPK inhibitor PD98059. Cell death was assessed by Live/Dead assay, MTS assay and TUNEL. Caspase 3 activity was also measured. Activation of MAPK family members was determined by immunoblot. Bcl2, neuritin and Bid mRNA (by quantitative-PCR) and protein levels (by immunoblot) were also measured.

Principal Findings

As expected Glu treatment increased caspase 3 activity and cell death in the GT1-7 cells, but Glu alone did not induce cell death or affect caspase 3 activity in the SCN2.2 cells. However, pretreatment with PD98059 increased caspase 3 activity and resulted in cell death after Glu treatment in SCN2.2 cells. This effect was dependent on NMDA receptor activation. Glu treatment in the SCN2.2 cells resulted in sustained activation of the anti-apoptotic pERK/MAPK, without affecting the pro-apoptotic p-p38/MAPK. In contrast, Glu exposure in GT1-7 cells caused an increase in p-p38/MAPK and a decrease in pERK/MAPK. Bcl2-protein increased in SCN2.2 cells following Glu treatment, but not in GT1-7 cells; bid mRNA and cleaved-Bid protein increased in GT1-7, but not SCN2.2 cells.

Conclusions

Facilitation of ERK activation and inhibition of caspase activation promotes resistance to Glu excitotoxicity in SCN2.2 cells.

Significance

Further research will explore ERK/MAPK as a key molecule in the prevention of neurodegenerative processes.  相似文献   

16.
Although type A -aminobutyric acid (GABA) receptors (ligand-gated Cl channels) have been extensively studied in the central nervous system, no information is available on this receptor in lung cells. We have examined the expression of GABAA receptor -subunit (GABRP) during the trans-differentiation between rat alveolar epithelial type II cells and type I cells. Rat alveolar type II cells, when cultured on plastic plates, gradually trans-differentiated into type-I-like cells and lost their GABRP mRNA expression. However, the GABRP mRNA was partially retained in the type II cells cultured on Matrigel. Keratinocyte growth factor (a mitogen of type II cells) increased GABRP expression. A detached collagen gel maintained the GABRP mRNA to a level close to that of the freshly isolated type II cells. An air–liquid interface culture system, mimicking in vivo conditions in the lung, significantly up-regulated the expression of GABRP mRNA and protein. mRNAs of the GABAA receptor 1-, 3-, 2-, 2-, and 3-subunits were also detected in rat type II cells. These results suggest that GABRP expression is differentially regulated by culture substrata, growth factor, detached gel, and an air-apical surface.This work was supported by NIH R01 HL-52146, R01 NIH-071628, and OCAST HR01-093, and AHA heartland affiliate 0255992Z (to L.L.). N.J. was supported by an AHA heartland affiliate pre-doctoral fellowship (0315256Z).  相似文献   

17.
18.
The density and functional activity of theN-methyl-D-aspartate (NMDA)-sensitive glutamate receptor was examined in various brain areas of 3-, 18- and 24-month-old rats. The total numbers of binding sites for the NMDA receptor antagonists [3H]CGP 39653 and [3H]MK 801 binding sites were decreased in the hippocampus, cerebral cortex and striatum of 18- and 24-month-old rats, relative to 3-month-old animals. In the hippocampus of 18-month-old rats, the reduced number of NMDA receptors was associated with an increased sensitivity of [3H]MK 801 binding to the stimulatory action of glycine and glutamate. Thus, 10 M glycine and 10 M glutamate increased [3H]MK 801 binding in the hippocampus of 18-month-old rats by 75 and 160%, respectively; in 3-month-old animals, the same concentration of these amino acids increased binding by 37 and 95%, respectively. The sensitivity of [3H]MK 801 binding to glycine and glutamate was not increased in the cerebral cortex and striatum of aged rats. Moreover, an increased efficacy of glycine and glutamate in stimulating the binding of [3H]MK 801 in the hippocampus was no longer apparent in the 24-month-old rats. The increased sensitivity of [3H]MK 801 binding to glycine and glutamate in the hippocampus of 18-month-old rats may reflect an increase in NMDA receptor activity to compensate for the decrease in receptor number.  相似文献   

19.
We tested the hypothesis that sinusoidal length oscillation and receptor activation interactively regulate the abundance of mRNA encoding -smooth muscle (-SM) actin and myosin isoforms in intact bovine tracheal smooth muscle. We found that sinusoidal length oscillation significantly downregulated abundance of mRNA encoding -SM actin mRNA in unstimulated tissues but not in histamine- and carbachol-activated tissues. This observation suggests antagonistic interactions between mechanical stretch and receptor-mediated signal transduction in regulating the abundance of mRNA encoding -SM actin in intact airway smooth muscle. This pattern of antagonistic interaction was also observed in cholinergic receptor activation experiments. Whereas carbachol significantly upregulated myosin heavy chain SMA isoform expression in muscle strips held at slack length, carbachol did not significantly alter SMA expression in muscle strips at sinusoidal length oscillation. Carbachol also significantly upregulated GAPDH expression in bovine tracheal smooth muscle. However, unlike SMA expression, upregulation of GAPDH expression mediated by cholinergic receptor activation appeared to be insensitive to the mechanical state of airway smooth muscle. Unlike carbachol, histamine did not significantly alter the expression of GAPDH, myosin heavy chain SMA and SMB, myosin light chain LC17a and LC17b, and -SM actin in bovine tracheal smooth muscle. U0126 (10 µM) completely inhibited carbachol-induced ERK1/2 MAPK phosphorylation but did not significantly affect carbachol-induced upregulation of GAPDH and SMA expression, suggesting that the ERK1/2 MAPK pathway was not the underlying mechanism. A potential implication of these findings is that periodic stretching of airways during respiratory cycles may modulate mRNA expression by receptor agonists in airway smooth muscle cells in vivo. asthma; carbachol; deep inspiration; gene expression; histamine  相似文献   

20.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号