首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nucleic acid sequence-based amplification with electrochemiluminescent detection (NASBA/ECL) is an isothermal technique allowing rapid amplification and detection of specific regions of nucleic acid from a diverse range of sources. It is especially suitable for amplifying RNA. A NASBA/ECL technique has been developed allowing the detection of RNA from avian influenza virus subtype H7 derived from allantoic fluid harvested from inoculated chick embryos and from cell cultures. Degenerate amplification primers and amplicon capture probes were designed enabling the detection of low and highly pathogenic avian influenza of the H7 subtype from the Eurasian and North American lineages and the Australian sub-lineage. The NASBA/ECL technique is specific for subtype H7 and does not cross-react with other influenza subtypes or with viruses containing haemagglutinin-like genes. The assay is 10- to 100-fold more sensitive than a commercially available antigen capture immunoassay system. The NASBA/ECL assay could be used in high throughput poultry screening programmes.  相似文献   

2.
Nucleic Acid Sequence Based Amplification (iNASBA), an isothermal amplification technique for nucleic acids, was evaluated for the identification of medically important Candida species using primers selected from 18S rRNA sequences conserved in fungi. An RNA fragment of 257 nucleotides was amplified for Candida albicans. Nineteen different fungi were tested for rRNA amplification with the NASBA. All were positive when analyzed on agarose gel, whereas human RNA was negative. For the identification of Candida species, NASBA amplification products were analyzed in an enzyme bead-based detection format, using species-specific biotinylated probes and a generic Candida HRPO probe or a membrane-based system using biotinylated probes and avidin-HPRO. Discrimination of the major human pathogenic Candida spp. was based on a panel of biotinylated probes for C. krusei, C. tropicalis, C. albicans, C. glabrata, and C. lusitaniae. Using rRNA dilutions obtained from pure cultures of C. albicans, the combination of NASBA and the enzymatic bead-based detection yielded a sensitivity equivalent to 0.01 CFU. In a model system using 1 ml of artificially contaminated blood as few as 1-10 CFU of C. albicans could be detected. Testing of 68 clinical blood samples from patients suspected of candidemia showed that eight samples were positive for C. albicans and one for C. glabrata. Testing of 13 clinical plasma samples from patients suspected of fungemia identified the presence of C. albicans in two specimens. The whole procedure of sample preparation, amplification and identification by hybridization can be performed in 1 day. This speed and the observed sensitivity of the assay make the NASBA a good alternative to PCR for the detection of candidemia.  相似文献   

3.

Background

State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

Methodology and Principal Findings

The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

Conclusions and Significance

The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.  相似文献   

4.
A nanodiagnostic method using nucleic acid sequence-based amplification (NASBA) and gold nanoparticle probes (AuNP probes) was developed for colorimetric detection of Mycobacterium tuberculosis. The primers targeting 16S rRNA were used for the amplification of mycobacterial RNA by the isothermal NASBA process. The amplicons were hybridized with specific gold nanoparticle probes. The RNA–DNA hybrids were colorimetrically detected by the accumulation of gold nanoparticles. Using this method, 10 CFU ml?1 of M. tuberculosis was detected within less than 1 h. Results obtained from the clinical specimens showed 94.7% and 96% sensitivity and specificity, respectively. No interference was encountered in the amplification and detection of M. tuberculosis in the presence of non-target bacteria, confirming the specificity of the method.  相似文献   

5.
An electrochemical microfluidic biosensor with an integrated minipotentiostat for the quantification of RNA was developed based on nucleic acid hybridization and liposome signal amplification. Specificity of the biosensor was ensured by short DNA probes that hybridize with the target RNA or DNA sequence. The reporter probe was coupled to liposomes entrapping the electrochemically active redox couple potassium ferri/ferrohexacyanide. The capture probes were coupled to superparamagnetic beads that were isolated on a magnet in the biosensor. Upon capture, the liposomes were lysed to release the electrochemical markers that were detected on an interdigitated ultramicroelectrode array in the biosensor just downstream of the magnet. The current was measured, stored and displayed by miniaturized instrumentation (miniEC). The accuracy of the miniEC was evaluated by comparing its performance to a standard bench-top electrochemical workstation in static and dynamic DC amperometric experiments. In both sets of experiments, the inexpensive miniEC performance was comparable in signal strength to that of the electrochemical workstation. In fact, the miniEC achieved a detection limit of 0.01 μM combined ferri/ferrohexacyanide concentration which was 10× lower than that of the standard lab-bench system. The response time of the miniEC system was the same for low concentrations taking about 10 s to steady state. It was, however, slower at higher concentrations, taking 5 s versus only 1 s for the bench-top system. Finally, the functionality of the miniEC was successfully demonstrated with the detection of Dengue virus RNA.  相似文献   

6.
A commercially available nucleic acid sequence-based amplification (NASBA) NucliSens Basic Kit (NBK) assay for the detection of Mycoplasma pneumoniae 16S rRNA in respiratory specimens was developed and compared to standard NASBA and PCR assays previously developed in our laboratory. The specificity and sensitivity of the NBK assay was comparable to the specificity and sensitivity of the corresponding standard NASBA assay. The NBK offers standardized reagents for the development of a NASBA assay for the detection of M. pneumoniae in respiratory specimens and is easily adaptable to other amplification targets.  相似文献   

7.
The isothermal amplification method nucleic acid sequence-based amplification (NASBA), which amplifies RNA, has been reported as useful for the detection of microbial pathogens in food and environmental samples. Methods have been published for Campylobacter spp., Listeria monocytogenes and Salmonella enterica ser. Enteritidis in various foods and for Cryptosporidium parvum in water. Both 16S rRNA and various mRNAs have been used as target molecules for detection; the latter may have advantages in allowing specific detection of viable cells. Most of the methods to detect pathogens in foods have employed enrichment in nutrient medium prior to NASBA, as this can ensure sensitivity of detection and encourage the detection of only viable target cells. Although a relatively recent method, NASBA has the potential for adoption as a diagnostic tool for environmental pathogens.  相似文献   

8.

Background

Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management.

Methodology/Principal Findings

The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both).

Conclusion/Significance

We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics.  相似文献   

9.
Abstract A rapid method for a reliable and simultaneous identification of different lactic acid bacteria in fermented food has been developed. Various 16S and 23S rRNA-targeted, species-specific oligonucleotides were applied as capture probes in a non-radioactive reverse dot blot hybridization. A simple and fast DNA extraction method in combination with in vitro amplification of rRNA gene fragments enables the direct detection of typical starter organisms without any preceding enrichment or cultivation steps. Various lactic acid bacteria occurring in cheese, yogurt, sausages, sauerkraut and sourdough could be identified at the species level within 1 day.  相似文献   

10.
Isothermal nucleic acid sequence-based amplification (NASBA) was applied to detect Legionella 16S rRNA. The assay was originally developed as a Legionella pneumophila conventional NASBA assay with electrochemiluminescence (ECL) detection and was subsequently adapted to a L. pneumophila real-time NASBA format and a Legionella spp. real-time NASBA using molecular beacons. L. pneumophila RNA prepared from a plasmid construct was used to assess the analytical sensitivity of the assay. The sensitivity of the NASBA assay was 10 molecules of in vitro wild type L. pneumophila RNA and 0.1-1 colony-forming units (CFU) of L. pneumophila. In spiked respiratory specimens, the sensitivity of the NASBA assays was 1-10000 CFU of L. pneumophila serotype 1 depending on the background. After dilution of the nucleic acid extract prior to amplification, 1-10 CFU of L. pneumophila serotype 1 could be detected with both detection methods. Finally, 27 respiratory specimens, well characterized by culture and PCR, collected during a L. pneumophila outbreak, were tested by conventional and real-time NASBAs. All 11 PCR positive samples were positive by conventional NASBA, 9/11 and 10/11 were positive by L. pneumophila real-time NASBA and Legionella spp. real-time NASBA, respectively.  相似文献   

11.
A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections.  相似文献   

12.
Rapid, sensitive assays for nucleic acid amplification products have utility for the identification of bacterial or viral infections. We have developed a nucleic acid hybridization assay utilizing thin film technology that permits visual detection of hybrids. The silicon-based biosensor detects the presence of target sequences by enzymatically transducing the formation of nucleic acid hybrids into molecular thin films. These films alter the interference pattern of light on the biosensor surface, producing a perceived color change. We have applied this technology to the development of a chip containing capture probes specific for human respiratory virus sequences including respiratory syncytial virus, influenza virus A and B, parainfluenza virus types 1 and 3, and rhinovirus. In a ten-minute assay, the biosensor permits unambiguous identification of viral-specific RT/PCR products from infected cell lysates.  相似文献   

13.
AIMS: The objective of this study was to develop a Nucleic Acid Sequence Based Amplification (NASBA) assay, targeting 16S rRNA sequences, for direct detection of viable cells of Ralstonia solanacearum, the causal organism of bacterial wilt. The presence of intact 16S rRNA is considered to be a useful indicator for viability, as a rapid degradation of this target molecule is found upon cell death. METHODS AND RESULTS: It was demonstrated by RNase treatment of extracted nucleic acids from R. solanacearum cell suspensions that NASBA exclusively detected RNA and not DNA. The ability of NASBA to assess viability was demonstrated in two sets of experiments. In the first experiment, viable and chlorine-killed cells of R. solanacearum were added to a potato tuber extract and tested in NASBA and PCR. In NASBA, only extracts spiked with viable cells resulted in a specific signal after Northern blot analysis, whereas in PCR, targeting 16S rDNA sequences, both extracts with viable and killed cells resulted in specific signals. In the second experiment, the survival of R. solanacearum on metal strips was studied using NASBA, PCR-amplification and dilution plating on the semiselective medium SMSA. A positive correlation was found between NASBA and dilution plating detecting culturable cells, whereas PCR-amplification resulted in positive reactions also long after cells were dead. The detection level of NASBA for R. solanacearum added to potato tuber extracts was determined at 104 cfu per ml of extract, equivalent to 100 cfu per reaction. With purified RNA a detection level of 104 rRNA molecules was found. This corresponds with less than one bacterial cell, assuming that a metabolically active cell contains ca 105 copies of rRNA. Preliminary experiments demonstrated the potential of NASBA to detect R. solanacearum in naturally infected potato tuber extracts. CONCLUSIONS: NASBA specifically amplifies RNA from viable cells of R. solanacearum even present in complex substrates at a level of 100 cfu per reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel NASBA assay will be particularly valuable for detection of R. solanacearum in ecological studies in which specifically viable cells should be determined.  相似文献   

14.
Electric chips for rapid detection and quantification of nucleic acids   总被引:4,自引:0,他引:4  
A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.  相似文献   

15.
16.
17.
Oligonucleotide probes targeting the small-subunit rRNA are commonly used to detect and quantify bacteria in natural environments. We developed a PCR-based approach that allows synthesis of oligonucleotide probes targeting a variable region in the 16S rRNA without prior knowledge of the target sequence. Analysis of all 16S rRNA gene sequences in the Ribosomal Database Project database revealed two universal primer regions bracketing a variable, population-specific region. The probe synthesis is based on a two-step PCR amplification of this variable region in the 16S rRNA gene by using three universal bacterial primers. First, a double-stranded product is generated, which then serves as template in a linear amplification. After each of these steps, products are bound to magnetic beads and the primers are detached through hydrolysis of a ribonucleotide at the 3' end of the primers. This ultimately produces a single-stranded oligonucleotide of about 30 bases corresponding to the target. As probes, the oligonucleotides are highly specific and could discriminate between nucleic acids from closely and distantly related bacterial strains, including different species of VIBRIO: The method will facilitate rapid generation of oligonucleotide probes for large-scale hybridization assays such as screening of clone libraries or strain collections, ribotyping microarrays, and in situ hybridization. An additional advantage of the method is that fluorescently or radioactively labeled nucleotides can be incorporated during the second amplification, yielding intensely labeled probes.  相似文献   

18.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

19.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5' noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

20.
A method to detect major serotypes of foot-and-mouth disease virus   总被引:1,自引:0,他引:1  
Nucleic acid sequence-based amplification (NASBA) is an isothermal technique that allows the rapid amplification of specific regions of nucleic acid obtained from a diverse range of sources. It is especially suitable for amplifying RNA sequences. A rapid and specific NASBA technique was developed, allowing the detection of foot-and-mouth disease virus genetic material in a range of sample material, including preserved skin biopsy material from infected animals, vaccines prepared from denatured cell-free material, and cell-free antigen-based detection kits. A single pair of DNA oligonucleotide primers was able to amplify examples of all major FMD virus subtypes. The amplified viral RNA was detected by electrochemiluminescence. The method was at least as sensitive as existing cell-free antigen detection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号