首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae. Received: 24 March 1997 / Accepted: 21 April 1997  相似文献   

2.
Green euglenophytes are a group of eukaryotes with ancient origin. In order to understand the evolution of the group, it is interesting to know which characteristics are more primitive. Here, a phylogenetic tree of green euglenophytes based on the 18S rRNA gene was constructed, and ancestral states were reconstructed based on eight morphological characters. This research clarifies the phylogenetic relationships of green euglenophytes and provides a basis for the study of the origin of these plants. The phylogenetic tree, which was constructed by Bayesian inference, revealed that: Eutreptia and Eutreptiella were sister groups and that Lepocinclis, Phacus, and Discoplastis were close relatives; Euglena, Cryptoglena, Monomorphina, and Colacium were closely related in addition to Trachelomonas and Strombomonas; and Euglena was not monophyletic. An ancestral reconstruction based on morphological characters revealed seven primitive character states: ductile surface, spirally striated, slightly narrowing or sharp elongated cauda, absence of a lorica, chloroplast lamellar, shield or large discoid, pyrenoid with sheath, and with many small paramylon grains. However, the ancestral state of the length of the flagellum could not be inferred. Euglena and Euglenaria, which both possessed all of the ancestral character states, might represent the most ancient lineages of green euglenophytes.  相似文献   

3.
该研究基于叶绿体16S rRNA基因序列,构建绿色裸藻类的系统发育树,并对绿色裸藻类植物8个形态性状进行祖先重建分析,以明确绿色裸藻类植物的系统演化关系,为研究该类植物的起源提供理论依据。结果表明:(1)贝叶斯法构建的绿色裸藻类系统发育树显示,双鞭藻属与拟双鞭藻属互为姐妹群,扁裸藻属、鳞孔藻属和盘裸藻属亲缘关系较近,而囊裸藻属和陀螺藻属亲缘关系较近,裸藻属、隐裸藻属、柄裸藻属和旋形藻属亲缘关系较近,表明裸藻属不是一个单系类群。(2)基于形态性状的祖先重建结果显示,绿色裸藻类相对原始的7个性状包括:表质柔软易变形,出现螺旋形线纹,细胞后端渐尖或尖尾刺状,无囊壳,叶绿体为片状、盾状或大盘状,具无鞘蛋白核,副淀粉粒为小颗粒状且数量不定,而鞭毛长度不能推断可能的祖先状态。(3)综合8种性状祖先重建结果发现,裸藻属和眼裸藻属植物具有所有原始性状,可能是最先出现的绿色裸藻类的祖先。  相似文献   

4.
A revised version of an earlier phylogenetic model for the eukaryotes is presented. It is postulated that mitosis, phagotrophy, the mitochondrion, the flagellum, sexual reproduction, and the chloroplast are so complex that it is improbable that they evolved de novo more than once. It is assumed that their distribution among existing organisms is a reflection of their order of appearance in evolutionary history. Their distribution suggests that the nucleate organisms evolved through the sequence: amoeba, amoeboflagellate, sexual amoeboflagellate, and that the chloroplast first appeared in sexual flagellates. Sequence data indicate that the sexual amoeboflagellates gave rise to a line of holozoic protozoans that culminated in the metazoans. An amoeba-metazoan line can be envisaged as representing the mainstream of eukaryote evolution. Sequence data indicate that the sexual flagellates bearing mastigonemes, the eumycetes, and the metaphytes diverged from such a line, and in that order. Cytological and biochemical data strongly suggest that the rhodophytes and metaphytes derive from a common algal ancestor, that this ancestor would have arisen from a sexual, biflagellate, holozoic protozoan lacking mastigonemes, and that it would have been closely related to the most recent monocellular ancestor of the metazoans. Sequence data indicate that the chloroplast derives from an ancestral blue-green bacterium that was originally an endosymbiont within a phagotrophic protozoan. Thus the metaphytes may be secondary in a series of organisms able to produce chlorophyll a. There is evidence that subsequently a fully developed chloroplast able to produce chlorophylls a and b was transferred by a further symbiosis to a holozoic euglenoid protozoan; the chloroplast of the euglenophytes is so similar to that of the chlorophytes, but the morphologies of these algae are so different, it was postulated that euglenophytes arose through symbiosis between a euglenid and a chlorophyte. It is proposed here that the distribution of phylogenetic features among organisms bearing mastigonemes indicates that the euglenophytes gave rise to dinophytes, cryptophytes, and all other organisms bearing mastigonemes. Thus the algae bearing mastigonemes may be tertiary in a series of organisms able to produce chlorophyll a. It is postulated that the production of chlorophyll b in algae, and the stacking of thylakoids first appeared in a line from rhodophytes to chlorophytes, and that replacement of chlorophyll b by chlorophyll c2 occurred in a line from euglenophytes to dinophytes. To account for the presence of biliproteins in rhodophytes and cryptophytes, it is proposed that the putative transfer of the chloroplast from chlorophytes to euglenophytes occurred before a loss of biliproteins in the metaphyte line, and that the primordial euglenophytes, dinophytes, and cryptophytes were able to produce biliproteins; subsequently, biliprotein production was abandoned in all algae except rhodophytes and cryptophytes. The interrelationships of the chytrids, eumycetes, and oomycetes remain obscure. However, the model is consistent with the hypothesis that the chytrids represent ancestors to the eumycetes, and that the eumycete line and the oomycete-hyphochytrid group of fungi arose independently. The distribution of phagotrophy, biflagellate form, and sexuality suggests that the paired form of flagella first appeared in asexual amoeboflagellates, and became stabilised in sexual amoeboflagellates. The overall model is in accord with sequence evidence that the genomes of the nucleus, mitochondrion, and chloroplast derive from different genetic sources in ancestral prokaryotes, and is consistent with the hypothesis that the mitochondrion and chloroplast were acquired through endosymbioses initiated by phagotrophic inclusion of an aerobic bacterium, and a blue-green bacterium, respectively. Avenues for phylogenetic and sequence investigation for testing the model are suggested.  相似文献   

5.
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis—the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection–drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.  相似文献   

6.
The utility of absorbance and fluorescence-emission spectra for discriminating among microalgal phylogenetic groups, selected species, and phycobilin- and non-phycobilin-containing algae was examined using laboratory cultures. A similarity index algorithm, in conjunction with fourth-derivative transformation of absorbance spectra, provided discrimination among the chlorophyll [Chl] a/phycobilin (cyanobacteria), Chl a/Chl c/phycobilin (cryptophytes), Chl a/Chl b (chlorophytes, euglenophytes, prasinophytes), Chl a/Chl c/fucoxanthin (diatoms, chrysophytes, raphidophytes) and Chl a/Chl c/peridinin (dinoflagellates) spectral classes, and often between}among closely related phylogenetic groups within a class. Spectra for phylogenetic groups within the Chl a/Chl c/fucoxanthin, Chl a/Chl c/peridinin, Chl a/phycobilins and Chl a/Chl c/phycobilin classes were most distinguishable from spectra for groups within the Chl a/Chl b spectral class. Chrysophytes/diatoms/raphidophytes and dinoflagellates (groups within the comparable spectral classes, Chl a/Chl c/fucoxanthin and Chl a/Chl c/peridinin, respectively) displayed the greatest similarity between/among groups. Spectra for phylogenetic groups within the Chl a/Chl c classes displayed limited similarity with spectra for groups within the Chl/phycobilin classes. Among the cyanobacteria and chlorophytes surveyed, absorbance spectra of species possessing dissimilar cell morphologies were discriminated, with the greatest range of differentiation occurring among cyanobacteria. Among the cyanobacteria, spectra for selected problematic species were easily discriminated from spectra from each other and from other cyanobacteria. Fluorescence-emission spectra were distinct among spectral classes and the similarity comparisons involving fourth-derivative transformation of spectra discriminated the increasing contribution of distinct cyanobacterial species and between phycobilin- and non-phycobilin-containing species within a hypothetical mixed assemblage. These results were used to elucidate the application for in situ moored instrumentation incorporating such approaches in water quality monitoring programmes, particularly those targeting problematic cyanobacterial blooms.  相似文献   

7.
Chloroplast morphology was investigated in five species of euglenophytes: Trachelomonas volvocinopsis Swirenko, Strombomonas verrucosa (Daday) Deflandre, Strombomonas costata Deflandre, Colacium mucronatum Bourrelly et Chafaud, and Colacium vesiculosum Ehrenberg. All five species share a common plastid morphotype: disk‐shaped plastids with a pyrenoid that protrudes asymmetrically toward the center of the cell and is capped by a single large grain of paramylon that conforms to the shape of the pyrenoid. Although plastids demonstrated some degree of diversity among the species studied, it was not consistent with current generic boundaries. The plastids of S. verrucosa show a developmental pattern similar to that of Euglena gracilis. The plastids divide during the early portion of the light phase after cell division, and pyrenoids are reduced or absent in dividing plastids. Developmental patterns of plastid replication also suggest that these five taxa share recent common ancestry with members of the genus Euglena subgenus Calliglena.  相似文献   

8.
The allometry of algal respiration   总被引:7,自引:0,他引:7  
For 30 years, study after study has shown that respiration ratesincrease as {small tilde}0.75 of body size for organisms rangingfrom protozoans to mammals. However, a number of studies suggestedthat the respiration-size relationship for algae may be a rareexception to this general rule. Algal respiration may be almostproportional to cell size, such that the slope of the respiration-sizerelationship is closer to unity. The present study examinedthe effect of cell size and taxon on phytoplankton respiration,using data collected from the literature. To this end, we collecteda data set of 178 observations of algal respiration and cellsize representing six divisions-chlorophytes. chrysophytes,cyanophytes, euglenophytes, pyrrophytes and rhodophytes. Therelationship between respiration (R, in p1 O2 cell–1 h–1)and cell carbon content (C, in pg C cell–1) is describedas R = 0.030C0 93 and the exponent is significantly >3/4.When we expressed cell size in terms of volume, the exponentdecreased to 0.88 but this is still significantly >3/4. Amongthe six divisions studied, chlorophytes, euglenophytes and rhodophytesseemed to differ significantly in their respiration-size relationshipfrom other taxa. However, euglenophytes and rhodophytes havesuch small size ranges that no meaningful relationships canbe developed for those groups alone. The chlorophyte respiration-sizerelationship has obvious patterns in its residuals which mayindicate that significant sources of error were not controlledin these heterogeneous data. Thus, for the present, the generalmodel seems most appropriate for the prediction of respirationrates of phytoplankton.  相似文献   

9.
The enzyme myo-inositol dehydrogenase (InDH; EC 1.1.1.18) catalyses the NAD-dependent oxidation of myo-inositol to scyllo-inosose (2-keto-inositol). A survey within different algal groups showed that this enzyme is present in rhodophytes, glaucocystophytes, phaeophytes, xanthophytes and haptophytes but not in green algae, euglenophytes and chrysophytes. Anion-exchange chromatography of crude homogenates resulted in two distinct peaks of activity. Both isoenzymes were specific for myo-inositol and scyllo-inosose. epi- and scyllo-inositol as well as epi-inosose were only poor substrates, while all other polyols and sugars tested did not serve as substrates. A possible role of the InDH isoenzymes is the shuttling of reducing power between the mitochondrion and the cytosol.  相似文献   

10.
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by high-performance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.  相似文献   

11.
Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their “complex” plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Patrick Keeling ] The nucleotide sequence data will appear in the DDBJ/EMBL/GenBank International Nucleotide Sequence Database under the following accession numbers. cDNA clones: AY772245 (Pavlova lutheri); AY772246 (Guillardia theta); AY772247 (Lingulodinium polyedrum); AY772248 and AY772249 (Pyrocystis lunula); AY772250 (Euglena gracilis); AY772251 (Chondrus crispus). Genomic clone: AY772252 (Prymnesium parvum). Genomic PCR clone: AY772253 (Bigelowiella natans).  相似文献   

12.
Changes in the phytoplankton community of the hypertrophic, sharply stratified Lake Verevi have been studied over eight decades. Due to irregular discharge of urban wastewater, the trophic state of the lake has changed from moderately eutrophic to hypertrophic. We found that the trophic state in summer increased in the 1980s and remained at a hypertrophic level since then. Planktothrix agardhii was recorded first in the 1950s and became the dominant species in the 1980s, forming biomass maxima under the ice and in the metalimnion during the vegetation period. In summer 1989, P. agardhii contributed almost 100% of the phytoplankton biomass. Generally, the highest biomass values occurred in the metalimnion. In spring, when P. agardhii was less numerous, diatoms and cryptophytes prevailed. In springs 2000 and 2001 different diatoms dominated – Synedra acus var. angustissima (18.6 g m−3) and Cyclostephanos dubius (9.2 g m−3), respectively. In recent years, the spring overturn has been absent. In the conditions of strong thermal stratification sharp vertical gradients of light and nutrients caused a large number of vertically narrow niches in the water column. During a typical summer stage, the epilimnion, dominated by small flagellated chrysophytes, is nearly mesotrophic, and water transparency may reach 4 m. The lower part of the water column is hypertrophic with different species of cryptophytes and euglenophytes. A characteristic feature is the higher diversity of Chlorococcales. Often, species could form their peaks of biomass in very narrow layers, e.g. in August 2001 Ceratium hirundinella (18.6 g m−3) was found at a depth of 5 m (the lower part of the metalimnion with hypoxic conditions), Cryptomonas spp. (56 g m−3) at 6 m (with traces of oxygen and a relatively high content of dissolved organic matter) and euglenophytes (0.6 g m−3) at 7 m and deeper (without oxygen and a high content of dissolved organic matter).  相似文献   

13.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

14.
Ectocranial suture fusion patterns have been shown to contain biological and phylogenetic information. Previously the patterns of Homo, Pan, and Gorilla have been described. These data reflect the phylogenetic relationships among these species. In this study, we applied similar methodology to Pongo to determine the suture synostosis progression of this genus, and to allow comparison to previously reported data on other large‐bodied hominoids. We hypothesized these data would strengthen the argument that suture synostosis patterns reflect the phylogeny of primate taxa. Results indicate that the synostosis of vault sutures in Pongo is similar to that reported for Gorilla (excluding Pan and Homo). However, the lateral‐anterior pattern of fusion, in which there is a strong superior to inferior pattern, for Pongo is unique among these species, reflecting its phylogenetic distinctness among great ape taxa. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
H. R. Preisig 《Protoplasma》1994,181(1-4):29-42
Summary Flagellated protists produce a diverse range of siliceous structures, such as internal and external skeletons, scales, spines, bristles, cell walls, cyst walls, and loricae. The different groups of silica-depositing flagellates, i.e., chrysophytes/synurophytes, choanoflagellates, dinoflagellates, ebriids, silicoflagellates, thaumatomastigids, and the genusPetasaria are reviewed. Brief mention is also given to those algal groups in which silicification is uncommon and rare (i.e., chlorophytes, euglenophytes, haptophytes/prymnesiophytes, xanthophytes/tribophytes), but in which silicified structures nevertheless occur in few flagellate genera. Special attention is given to aspects of morphology and development of the different siliceous structures as well as on aspects of systematics and taxonomy.  相似文献   

16.
The use of continuous quantitative characters for phylogenetic analyses has long been contentious in the systematics literature. Recent studies argue for and against their use, but there have been relatively few attempts to evaluate whether these characters provide an accurate estimate of phylogeny, despite the fact that a number of methods have been developed to analyze these types of data for phylogenetic inference. A tree topology will be produced for a given methodology and set of characters, but little can be concluded with regards to the accuracy of phylogenetic signal without an independent evaluation of those characters. We assess the performance of continuous quantitative characters for the mygalomorph spider genus Antrodiaetus, a group that is morphologically homogeneous and one for which few discrete (morphological) characters have been observed. Phylogenetic signal contained in continuous quantitative characters is compared to an independently derived phylogeny inferred on the basis of multiple nuclear and mitochondrial gene loci. Tree topology randomizations, regression techniques, and topological tests all demonstrate that continuous quantitative characters in Antrodiaetus conflict with the phylogenetic signal contained in the gene trees. Our results show that the use of continuous quantitative characters for phylogenetic reconstruction may be inappropriate for reconstructing Antrodiaetus phylogeny and indicate that due caution should be exercised before employing this character type in the absence of other independently derived sources of characters.  相似文献   

17.
The adequacy and utility of behavioural characters in phylogenetics is widely acknowledged, especially for stereotyped behaviours. However, the most common behaviours are not stereotyped, and these are usually seen as inappropriate or more difficult to analyze in a phylogenetic context. A few methods have been proposed to deal with such data, although they have never been tested on samples larger than six species, which limits their evolutionary interest. In the present study, we perform behavioural observations on 13 cockroach species and derive behavioural phylogenetic characters with the successive event‐pairing method. We combine these characters with morphological and molecular data (approximately 6800 bp) in a phylogenetic study of 41 species. We then reconstruct ancestral states of the behavioural data to study evolution of social behaviour in these insects with regard to their social systems (i.e. solitary, gregarious, and subsocial) and diversity of habitat choice. We report for the first time that nonstereotyped behavioural data are adequate for phylogenetic analyses: they are no more homoplastic than traditional data, and support several phylogenetic relationships that we discuss. From an evolutionary perspective, we show that the solitary species Thanatophyllum akinetum does not display original behavioural interactions, suggesting phylogenetic inertia of interactive behaviours despite a radical change in social structure. Conversely, the subsocial species Parasphaeria boleiriana shows original behavioural interactions, which could result from its peculiar social system or habitat. We conclude that phylogenetic approaches in studies of behaviour are useful for deciphering evolution of behaviour and discriminating between its different modalities, even for nonstereotyped characters. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 58–77.  相似文献   

18.
Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feeding Drosophila species. These species form the Drosophila subquinaria species complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinaria and D. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support that D. subquinaria is paraphyletic, showing that samples from the geographic region sympatric with D. recens are most closely related to D. recens, whereas samples from the geographic region allopatric with D. recens are most closely related to D. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily from D. recens into D. subquinaria in the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.  相似文献   

19.
A phylogenetic hypothesis is presented for all 95 species of the family Vibrionaceae (Bacteria: Gammaproteobacteria) based on a combined analysis of eight molecular loci (16S rRNA, gyrB, recA, rpoA, gapA, mreB, topA, atpA) for up to 9337 nucleotide characters. Members of this taxon exhibit diverse life histories, including bioluminescence, pathogenicity to human and marine organisms, symbiosis, quorum sensing and extremophilic environment living, making a hypothesis of phylogenetic history important to studies addressing these traits from an evolutionary perspective. It is proposed that this phylogenetic set of relationships replaces previous phenetic hypotheses and be used to construct a phylogenetic taxonomy. Recent taxonomic proposals, including the validity of four, instead of one, families representing the 95 species and historical notions of genera within the group are compared with the presented phylogenetic hypothesis. Character support is traced through the tree and is used to address these taxonomic proposals. Photobacterium is not a monophyletic group as it is currently delimited. Aliivibrio is found within Photobacterium, suggesting a new definition for Photobacterium that includes all species of Aliivibrio. Enterovibrio, Salinivibrio and Grimontia, previously thought to be distinct from and basal to Photobacterium and Vibrio, are found nested deeply within a large Vibrio clade. © The Willi Hennig Society 2010.  相似文献   

20.
To evaluate rates of evolution, to establish tests of correlation between two traits, or to investigate to what degree the phylogeny of a species assemblage is predictive of a trait value so‐called tests for phylogenetic signal are used. Being based on different approaches, these tests are generally thought to possess quite different statistical performances. In this article, we show that the Blomberg et al. K and K*, the Abouheif index, the Moran's I, and the Mantel correlation are all based on a cross‐product statistic, and are thus all related to each other when they are associated to a permutation test of phylogenetic signal. What changes is only the way phylogenetic and trait similarities (or dissimilarities) among the tips of a phylogeny are computed. The definitions of the phylogenetic and trait‐based (dis)similarities among tips thus determines the performance of the tests. We shortly discuss the biological and statistical consequences (in terms of power and type I error of the tests) of the observed relatedness among the statistics that allow tests for phylogenetic signal. Blomberg et al. K* statistic appears as one on the most efficient approaches to test for phylogenetic signal. When branch lengths are not available or not accurate, Abouheif's Cmean statistic is a powerful alternative to K*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号