首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An investigation was performed into the operation of an integrated system for continuous production and product recovery of solvents (acetone-butanol-ethanol) from the ABE fermentation process. Cells of Clostridium acetobutylicum were immobilized by adsorption onto bonechar, and used in a fluidized bed reactor for continuous solvent production from whey permeate. The reactor effluent was stripped of the solvents using nitrogen gas, and was recycled to the reactor. This relieved product inhibition and allowed further sugar utilization. At a dilution rate of 1.37 h–1 a reactor productivity of 5.1 kg/(m3 · h) was achieved. The solvents in the stripping gas were condensed to give a solution of 53.7 kg/m3. This system has the advantages of relieving product inhibition, and providing a more concentrated solution for recovery by distillation. Residual sugar and non-volatile reaction intermediates are not removed by gas stripping and this contributes to high solvent yields.List of Symbols C kg/m3 Lactose concentration in reactor effluent - C b kg/m3 Lactose concentration in bleed stream - C c kg/m3 Lactose concentration in whey permeate feed - C i kg/m3 Lactose concentration at reactor inlet - C p kg/m3 Lactose concentration in condensed solvent stream (=0) - C r kg/m3 Lactose concentration in recycle line (C b=C r) - C kg/h Amount of lactose utilized during certain time period - D h1 Dilution rate of reactor, F i/D=F/D - F dm3/h, m3/h F i = Rate of feed flow to the reactor - F b dm 3/h, m3/h Rate of bleed - F c dm3/h, m3/h Rate of feed of whey permeate solution - F p dm3/h, m3/h Rate of concentrated product removal - F r dm3/h, m3/h Rate of recycle of stripped effluent to the reactor - P l % Percent lactose utilization - R l kg/(m3 · h) Overall lactose utilization rate - R p kg/(m3 · h) Overall reactor (solvent) productivity - R sl kg/h Rate of solvent loss - S kg/m3 Solvent concentration in reactor effluent - S b kg/m3 Solvent concentration in bleed - S c kg/m3 0; Solvent concentration in concentrated whey permeate solution - S i kg/m3 Solvent concentration at inlet of reactor - S p kg/m3 Solvent concentration in concentrated product stream - S r kg/m3 Solvent concentration in stripped effluent, S r=Sb - S kg/h Amount of solvent produced from C amount of lactose in a particular time - ds/dt kg/(m3 · h) Rate of accumulation of solvents in the stripper - t h Time - V dm3, m3 Total reactor volume - V 1 dm3, m3 Liquid volume in stripper - Y P/S Solvent yield  相似文献   

2.
Fluidized sand bed anaerobic biofilm reactors were operated in parallel to study the effects of inoculum, loading, residence time and carrier type on the startup dynamics for the degradation of molasses and phenol. Degradation rates generally depended most directly on concentrations rather than on other operating variables. Residence times did not appear to directly influence startup. Short residence times and high loadings gave the highest specific activities for both substrates. The type of inoculum was found to be most important for the molasses system, and inoculation on fresh carrier was found to be better than reinoculation. The two times higher specific biomass retention on Siran porous glass gave essentially the same degradation rates on a volume basis.List of Symbols L kg/h loading of reactor - M kg/kg biomass per carrier mass - Red. % reduction of feed concentration due to degradation - R kg/(m3 · h) reaction rate - S kg/m3 substrate concentration in reactor and effluent - S 0 kg/m3 substrate concentration in feed - t h time  相似文献   

3.
A modified discontinuous packed bed reactor with CO2 ventilation ports, resembling a trickle bed reactor was employed to overcome gas holdup and bed compaction problems which are commonly encountered in cell immobilized packed bed reactors for ethanol fermentation. The reactor consisting of yeast cells entrapped in alginate matrix was operated by varying the substrate concentration, bed volume and inlet flow rates. The number of recirculation cycles (passes) and total stages were dependent upon the liquid flow rate, though the total contact time for complete conversion remains the same for a particular initial substrate level. The total contact time was 1.5, 3 and 4.5 h for initial substrate concentrations of 0.555, 0.933 and 1.3 kmol/m3 respectively. The number of cycles and in turn stages increased with the increase in initial sugar level. A graphical method for predicting the number of stages required for complete conversion was proposed based on material balance equation and evaluated for the operating variables of the present study. The reactor was operated continuously for 30 days producing 1.05– 1.15 kmol/m3.  相似文献   

4.
Enzyme production with E. coli ATCC 11105, in a complex medium using phenylacetic acid as inducer is carried out in a stirred-tank reactor of 10 dm3 and an airlift tower-loop reactor of 60 dm3 with outer loop at a temperature of 27 °C. The optimum inducer concentration was 0.8 kg/m3, which was kept constant by fed-batch operation. The optimum of the relative dissolved O2-concentration with regard to saturation is below 10% in a stirred-tank reactor and at 35% in a tower-loop reactor. It was kept constant by parameter-adaptive control of the aeration rate. In a stirred-tank enzyme productivity is slightly higher than in a tower-loop reactor, and much higher than in a bubble column reactor.List of Symbols CPR kg/(m3 h) CO2-production rate - OTR kg/(m3 h) O2-transfer rate - OUR kg/(m3 h) O2-utilization rate - PAA phenylacetic acid (inducer) - RQ = CPR/OUR respiratory quotient - X kg/m3 cell mass concentration - m h–1 maximum specific growth rate  相似文献   

5.
This is a scale-down study of a 500-m3 methane recovery test plant for anaerobic treatment of palm oil mill effluent (POME) where biomass washout has become one of the problems because of the continuous mixing of effluent during anaerobic treatment of POME. Therefore, in this study, anaerobic POME treatment using a scaled down 50-l bioreactor which mimicked the 500-m3 bioreactor was carried out to improve biogas production with and without biomass sedimentation. Three sets of experiments were conducted under different conditions in terms of biomass sedimentation applied to the system. The first experiment was operated under semi-continuous mode whereas the second and third experiments were operated based on mix and settle mode. As expected, biomass retention improved the anaerobic process as the POME treatment incorporated with mix and settle system were able to operate at an organic loading rate (OLR) of 3.5 and 6.0 kg COD/m3/day respectively, while the semi-continuous operated anaerobic treatment only achieved OLR of 3.0 kg COD/m3/day. The highest biogas and methane production rates achieved were 2.42 m3/m3 of reactor/day and 0.992 m3/m3 of reactor/day, respectively at OLR 6.0 kg COD/m3/day. The biomass or solids retention in the reactors was represented by the total solids measured in this study.  相似文献   

6.
In-situ recovery of butanol during fermentation   总被引:1,自引:0,他引:1  
End-product inhibition in the acetone-butanol fermentation was reduced by using extractive fermentation to continuously remove acetone and butanol from the fermentation broth. In situ removal of inhibitory products from Clostridium acetobutylicum resulted in increased reactor productivity; volumetric butanol productivity increased from 0.58 kg/(m3h) in batch fermentation to 1.5 kg/(m3h) in fed-batch extractive fermentation using oleyl alcohol as the extraction solvent. The use of fed-batch operation allowed glucose solutions of up to 500 kg/m3 to be fermented, resulting in a 3.5- to 5-fold decrease in waste water volume. Butanol reached a concentration of 30–35 kg/m3 in the oleyl alcohol extractant at the end of fermentation, a concentration that is 2–3 times higher than is possible in regular batch or fed-batch fermentation. Butanol productivities and glucose conversions in fed-batch extractive fermentation compare favorable with continuous fermentation and in situ product removal fermentations.List of Symbols C g kg/m3 concentration of glucose in the feed - C w dm3/m3 concentration of water in the feed - F(t) cm3/h flowrate of feed to the fermentor at time t - V(t) dm3 broth volume at time t - V i dm3 initial broth volume - V si dm3 volume of the i-th aqueous phase sample - effective fraction of water in the feed Part 1. Bioprocess Engineering 2 (1987) 1–12  相似文献   

7.
A continuous fluidized bed reactor operation system has been developed for ethanol production by Zymomonas mobilis using hydrolysed B-starch without sterilization. The operation system consists of two phases. In the first phase macroporous glass carriers in a totally mixed fluidized bed reactor were filled up totally with a monoculture of Z. mobilis by fast computer-controlled colonization, so that in the subsequent production phase no contaminants, especially lactic-acid bacteria, could penetrate into the carrier beads. In the production phase the high concentration of immobilized Z. mobilis cells in the fluidized bed reactor permits unsterile fermentation of hydrolysed B-starch to ethanol at short residence times. This results in wash-out conditions for contaminants from the substrate. Long-term experimental studies (more than 120 days) of unsterile fermentation of hydrolysed B-starch in the laboratory fluidized bed reactor (2.2 l) demonstrated stable operation up to residence times of 5 h. A semi-technical fluidized bed reactor plant (cascade of two fluidized bed reactors, each 55 l) was operated stably at a mean residence time of 4.25 h. Glucose conversion of 99% of the unsterile hydrolysed B-starch was achieved at 120 g glucose/l–1 in the substrate, resulting in an ethanol concentration of 50 g·l–1 and an ethanol space-time yield of 13 g·l–1·h–1. This is a factor of three compared to ethanol fermentation of hydrolysed B-starch with Z. mobilis in a continuous stirred tank reactor, which can only be operated stably under sterile conditions. Correspondence to: D. Weuster-Botz  相似文献   

8.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

9.
The present paper presents a study of propionic acid production from whey by using Propionibacterium acidipropionici in batch and continuous fermentation with cell recycle. The experimental investigation is carried through with a biomass concentration (DW) of 112kg/m3. The highest propionic acid productivity is 2.14 kg/(m3 h). Biomass concentration is 9 times as high, propionic acid productivity 6 times as high as compared to batch results.  相似文献   

10.
A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m3, optimum productivity was 31 kg/(m3 · h) at ethanol concentration of 65 kg/m3. Low levels of acetate (0.05–0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization.  相似文献   

11.
Summary A light-emitting diode-based photobioreactor (LED-based PBR) operated in a continuous perfusion mode with a perfusion rate of 3 to 6 reactor volumes a day supports high-density algal cultures, of cell concentrations up to 4·109 cells/mL, or 25 g/L. The oxygen production rate at its peak was 13 to 15 mmol/(L·h). Continuous medium perfusion allowed for long-term stable oxygen production, while oxygen production in batch mode ceased when stationary phase was reached.  相似文献   

12.
Continuous ethanol production in a three stage horizontal tank bioreactor (HTR) by yeast cells entrapped in Ca-alginate was about 30% higher than in a vertical type of bioreactor and reached 31 kg/(m3 · h) at 95% glucose utilization. Maximum ethanol productivity obtained was 41.2 kg/(m3 · h), however, with 38% of the glucose fed to the HTR being wasted. The higher performance of the HTR had been mainly accounted for the reduction of the adverse CO2 gas phase effect and the more pronounced plug-flow character. Glucose and ethanol profiles along the HTR revealed that 50–80% of the overall fermentation activity was present in the first stage. Within a test period of 23 d the HTR showed an excellent operational stability.Compared to other continuous ethanol production processes using entrapped yeast cells the HTR presented here belongs to the top ones.  相似文献   

13.
To supervise, stabilize and optimize antibiotic fermentations in the industrial scale expert systems are presently worked out. For the knowledge acquisition various classifiers are tested using a set of 27 nourseothricin fermentation runs. Two methods are applied: optimal clustering by help of minimum variance criterion and hierarchical clustering by help of dendrograms. The fermentations are classified with respect to the specific material costs as well as the product formation kinetics.List of Symbols a kg/m3 initial value of linearized product kinetics - b kg/(m3 · h) slope of linearized product kinetics - B binary variable (value 0 or 1) - C DM/kg specific costs - d distance - m number of samples - p kg/m3 product concentration - pO2 % dissolved oxygen concentration - t h fermentation time - T h initial time of linearized product kinetics - n number of fermentation runs  相似文献   

14.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

15.
Leachate from a municipal waste landfill site was treated using an activated sludge bioreactor, a fluidized bed biofilm reactor and a packed-bed column reactor (trickling filter). The leachate contained high organic matter (2.0–2.6 g/l of COD), high ammonium (300–700 mg/l) and sulphide (200–800 mg/l) concentrations, as well as low metal concentrations. The continuously operating reactors were employed to study the effects of TOC loading on the removal of TOC as well as on the nitrification and denitrification processes. Among the three biological treatment technologies investigated, the fluidized bed biofilm reactor was best with respect to removing ammonia and TOC. More than 90% of TOC and 99% of ammonia were removed when TOC loading was less than 0.5 kg/m3 × d. At a TOC loading of 4 kg/m3 × d, the removal of TOC and ammonia was 80% and 99%, respectively. In contrast, the treatment of leachate with the packed-bed reactor was successful in TOC removing only at TOC loading less than 0.3 kg/m3 × d (TOC elimination decreased from 86% at 0.06 kg/m3 × d to 60% at 0.3 kg/m3 × d). However, the reactor was active in nitrification even at a higher TOC loading (more than a 98% ammonia elimination at a TOC loading of 0.5 kg/m3 × d). Leachate was processed in the activated sludge reactor when TOC loading was less than 0.5 kg/m3 × d (with a removal of TOC and ammonia up to 83% and 99%, respectively). The activated sludge reactor was also effective in TOC removal at a higher TOC loading (e.g. a 74% TOC removal at a TOC loading of 1 kg/m3 × d), but for ammonia elimination, the activity continuously decreased (less than 60% ammonia removal at a TOC loading of 1 kg/m3 × d). Overloading in the activated sludge system was indicated by a high concentration of ammonia and nitrite in the effluent. In the packed bed reactor, overloading was characterized by a progressively incomplete TOC removal. No significant overloading was found in the fluidized bed reactor up to a TOC loading of 4 kg/m3 × d.  相似文献   

16.
Acetone butanol ethanol (ABE) was produced in an integrated continuous one-stage fermentation and gas stripping product recovery system using Clostridium beijerinckii BA101 and fermentation gases (CO2 and H2). In this system, the bioreactor was fed with a concentrated sugar solution (250–500 g L?1 glucose). The bioreactor was bled semi-continuously to avoid accumulation of inhibitory chemicals and products. The continuous system was operated for 504 h (21 days) after which the fermentation was intentionally terminated. The bioreactor produced 461.3 g ABE from 1,125.0 g total sugar in 1 L culture volume as compared to a control batch process in which 18.4 g ABE was produced from 47.3 g sugar. These results demonstrate that ABE fermentation can be operated in an integrated continuous one-stage fermentation and product recovery system for a long period of time, if butanol and other microbial metabolites in the bioreactor are kept below threshold of toxicity.  相似文献   

17.
Poor startup of biological hydrogen production systems can cause an ineffective hydrogen production rate and poor biomass growth at a high hydraulic retention time (HRT), or cause a prolonged period of acclimation. In this paper a new startup strategy was developed in order to improve the enrichment of the hydrogen‐producing population and the efficiency of hydrogen production. A continuously‐stirred tank reactor (CSTR) and molasses were used to evaluate the hydrogen productivity of the sewage sludge microflora at a temperature of 35 °C. The experimental results indicated that the feed to microorganism ratio (F/M ratio) was a key parameter for the enrichment of hydrogen producing sludge in a continuous‐flow reactor. When the initial biomass was inoculated with 6.24 g of volatile suspended solids (VSS)/L, an HRT of 6 h, an initial organic loading rate (OLR) of 7.0 kg chemical oxygen demand (COD)/(m3 × d) and an feed to microorganism ratio (F/M) ratio of about 2–3 g COD/(g of volatile suspended solids (VSS) per day) were maintained during startup. Under these conditions, a hydrogen producing population at an equilibrium state could be established within 30 days. The main liquid fermentation products were acetate and ethanol. Biogas was composed of H2 and CO2. The hydrogen content in the biogas amounted to 47.5 %. The average hydrogen yield was 2.01 mol/mol hexose consumed. It was also observed that a special hydrogen producing population was formed when this startup strategy was used. It is supposed that the population may have had some special metabolic pathways to produce hydrogen along with ethanol as the main fermentation products.  相似文献   

18.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

19.
Extracellular lipase production by the recombinant strain Staphylococcus carnosus (pLipMut2) has been studied. First substrate optimization was carried out in shaken cultures. As a result, the best substrate yield of 20 units/g (peptone + yeast extract) and maximum lipase activity in the culture supernatant of 1.7 units/cm3 could be obtained by a nutrient rich complex medium consisting of 75 kg/m3 yeast extract, 15 kg/m3 tryptone, 5 kg/m3 glucose and 0.5 kg/m3 K2HPO4. Higher initial substrate concentration caused inhibition of growth. Antifoam agent at higher levels than 1 cm3/ dm3 resulted in a negative influence on lipase yield. Comparative fermentation studies have been carried out in a bubble column reactor and in a centrifugal field bioreactor. Direct proportionality between growth, lipase production and oxygen consumption was observed. In the bubble column reactor usual superficial air velocities (4 cm/s) caused intensive foam generation, thus fermentation was only possible after installation of a broader column head to allow coalescence. In the centrifugal field bioreactor higher productivities were obtained without foam problems at superficial gas velocities which were one order of magnitude lower than in the bubble column. Fermentations have been performed batchwise and without holding pH constant. Neither pH control nor glucose feeding could improve the substrate yield further. Compared to former fermentation studies with the strain S. carnosus (pLipPS1) lipase yield (lipase activity/cell density) could be improved by 300% and substrate yield (lipase activity/substrate concentration) by 600%.  相似文献   

20.
SO2–ethanol–water (SEW) spent liquor from spruce chips was successfully used for batch and continuous production of acetone, butanol and ethanol (ABE). Initially, batch experiments were performed using spent liquor to check the suitability for production of ABE. Maximum concentration of total ABE was found to be 8.79 g/l using 4-fold diluted SEW liquor supplemented with 35 g/l of glucose. The effect of dilution rate on solvent production, productivity and yield was studied in column reactor consisting of immobilized Clostridium acetobutylicum DSM 792 on wood pulp. Total solvent concentration of 12 g/l was obtained at a dilution rate of 0.21 h−1. The maximum solvent productivity (4.86 g/l h) with yield of 0.27 g/g was obtained at dilution rate of 0.64 h−1. Further, to increase the solvent yield, the unutilized sugars were subjected to batch fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号