首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we show that SV-IV, a major immunomodulatory, anti-inflammatory, and sperm immunoprotective protein secreted from the rat seminal vesicle epithelium, acts in vitro as a substrate of protein kinase C (PKC) competing efficiently with H1 histone, a very well known PKC substrate. Electrospray mass spectrometry (ES-MS) analysis demonstrated that approximately 10% of the native SV-IV molecules were phosphorylated by PKC and that such a modification involved only a single serine residue (Ser58) out of the 22 occurring in the protein. Interestingly, this modification produced a substantial enhancement (approximately 50%) of the native SV-IV's ability to stimulate the activity of both horseradish peroxidase (POD) and selenium-dependent glutathione peroxidase (GPX), an enzyme that is known to protect the mammalian spermatozoa from oxidative stress and loss of motility in the female genital tract following ejaculation. In contrast, the phosphorylation of SV-IV on Ser58 did not produce any effect on the anti-inflammatory properties of SV-IV, as measured by its ability to inhibit the phospholipase A2.  相似文献   

2.
The protein SV-IV, a major protein secreted from the rat seminal vesicle epithelium, is a basic protein with immunomodulatory, anti-inflammatory, and procoagulant activity. Predictions suggested that this protein is very flexible, with its three tyrosyl residues presumably located in water-exposed segments of the primary structure. The solution behaviour of the protein was investigated by two types of spectroscopic techniques. Modifications of the spectral characteristics of tyrosyl residues induced by changes of protein concentration were demonstrated by absorption and fluorescence experiments. In addition, secondary structure rearrangements associated with a possible self-association equilibrium were highlighted by far-UV CD spectra. The equilibrium, confirmed by chromatographic techniques, appears to control some biological properties of the protein.  相似文献   

3.
Vilasi S  Ragone R 《The FEBS journal》2008,275(4):763-774
The potent immunomodulatory, anti-inflammatory and procoagulant properties of protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have previously been found to be modulated by a supramolecular monomer-trimer equilibrium. More structural details that integrate experimental data into a predictive framework have recently been reported. Unfortunately, homology modelling and fold-recognition strategies were not successful in creating a theoretical model of the structural organization of SV-IV. It was inferred that the global structure of SV-IV is not similar to that of any protein of known three-dimensional structure. Reversing the classical approach to the sequence-structure-function paradigm, in this paper we report novel information obtained by comparing the physicochemical parameters of SV-IV with two datasets composed of intrinsically unfolded and ideally globular proteins. In addition, we analyse the SV-IV sequence by several publicly available disorder-oriented predictors. Overall, disorder predictions and a re-examination of existing experimental data strongly suggest that SV-IV needs large plasticity to efficiently interact with the different targets that characterize its multifaceted biological function, and should therefore be better classified as an intrinsically disordered protein.  相似文献   

4.
SV-IV (seminal vesicle protein no. 4) is a potent immunomodulatory and anti-inflammatory secretory protein (Mr 9758) produced in large amounts by the rat seminal vesicle epithelium. Here we show that this protein possesses the ability to upregulate in J774 macrophages the expression of the gene coding for the inducible nitric oxide synthase (iNOS). The increase in NO production consequent on the marked enhancement of iNOS activity was not associated with apoptotic damage of the SV-IV-treated cells. In the same experimental model, however, LPS induced upregulation of iNOS coupled with an increase in NO production and marked apoptotic death. Differences in the ability of SV-IV and LPS to control the life/ death signal balance in target cells via trans-membrane activation of apoptotic (mediated by TNF-alpha and NO/iNOS system) and anti-apoptotic (mediated by bcl-2, c-myc, etc.) pathways are suggested to be the basis of the apoptotic fate of the experimentally treated cells. In addition, considering the important role played by NO in the process of mammalian reproduction, SV-IV may be involved in the fine tuning of NO concentration in the female genital tract mucosa via an SV-IV-mediated control of iNOS gene expression in local macrophages.  相似文献   

5.
Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.  相似文献   

6.
Four different transglutaminase-modified forms of a protein secreted by the rat seminal vesicles (SV-IV) were synthesized in vitro and characterized. FAB maps of both the native protein and its derivatives, produced by the purified guinea pig liver enzyme in the presence or absence of the polyamine spermidine, were obtained by mass spectrometric analysis after proteolytic digestions. Two differently derivatized SV-IV molecular forms, both possessing only one glutamine residue out of two (Gln-86) cross-linked to endogenous lysine residues, were produced when spermidine was omitted from the reaction mixture: (i) an insoluble homopolymer in which Lys-2, -4, -59, -78, -79, and -80 were involved in the linkage; (ii) a soluble form of the protein with an intramolecular epsilon-(gamma-glutamyl)lysine isopeptide bond between Gln-86 and Lys-59. Two species of SV-IV-spermidine adducts were obtained when the protein was treated with transglutaminase in the presence of high concentrations of the polyamine. The first one was characterized by one spermidine molecule covalently bound to Gln-86 and the second one by two spermidine molecules respectively bound to Gln-9 and Gln-86.  相似文献   

7.
Using a number of analogs and fragments of a short-chain peptide bradykinin, a series of experiments have been carried out to assess the effect of modifications to the basic structure of the parent molecule on its myotropic and immunoreactive properties. Binding kinetics of both an antibody raised against the authentic nonapeptide and its specific biological receptor found in the guinea pig ileum were used to study these alteration effects. Peptide derivatives of bradykinin with an extension at the N-terminal (Lys- and Met-Lys-bradykinin) cross-react with the antibody raised to bradykinin 59 and 70% respectively. On the other hand, internal fragments with intact C-termini (2-9 and 3-9 bradykinin) react with this same antibody to an extent of 250 and 875% respectively, indicating that they are more potent antigens than the vasopressor molecule itself. Other internal fragments, as well as 9-substituted analogs effectively and not interact. These results indicated that the C terminal arginine of bradykinin is indeed essential in the binding mechanism with its antibody. This in turn illustrates the role of the carrier ovalbumin in the development of antiserum to the ovalbumin-toluene-diisocyanate-bradykinin complex. The physiological experiments with the guinea pig bioassay preparations lead to similar conclusions. Most internal fragments of bradykinin are devoid of activity, whereas N-terminal fragments (2-9, 3-9, and 5-9 bradykinin) have retained some activity again indicating a need for an intact arginine residue at the C-terminus of the molecule. Any modification in position 9 results in severe impairment of biological activity. Thus, the C-terminal residue of bradykinin must be conserved in order that the molecule may retain its immunological and physiological activities. Any extensions, deletions, or modifications of this site will severely retard these functions.  相似文献   

8.
HIV-1 integrase (IN) is an important target for designing new antiviral therapies. Screening of potential inhibitors using recombinant IN-based assays has revealed a number of promising leads including nucleotide analogs such as pyridoxal 5'-phosphate (PLP). Certain PLP derivatives were shown to also exhibit antiviral activities in cell-based assays. To identify an inhibitory binding site of PLP to IN, we used the intrinsic chemical property of this compound to form a Schiff base with a primary amine in the protein at the nucleotide binding site. The amino acid affected was then revealed by mass spectrometric analysis of the proteolytic peptide fragments of IN. We found that an IC(50) concentration (15 mum) of PLP modified a single IN residue, Lys(244), located in the C-terminal domain. In fact, we observed a correlation between interaction of PLP with Lys(244) and the compound's ability to impair formation of the IN.DNA complex. Site-directed mutagenesis studies confirmed an essential role of Lys(244) for catalytic activities of recombinant IN and viral replication. Molecular modeling revealed that Lys(244) together with several other DNA binding residues provides a plausible pocket for a nucleotide inhibitor-binding site. To our knowledge, this is the first report indicating that a small molecule inhibitor can impair IN activity through its binding to the protein C terminus. At the same time, our findings highlight the importance of structural analysis of the full-length protein.  相似文献   

9.
Our previous studies showed that the nonapeptide fragment of HLA-DQ of the sequence H-Thr-Pro-Gln-Arg-Gly-Asp-Val-Tyr-Thr-OH, located in the beta164-172 loop, strongly suppresses the humoral and cellular immune responses, while its shorter analogs, H-Arg-Gly-Asp-Val-OH, H-Arg-Gly-Asp-Val-Tyr-OH and H-Gln-Arg-Gly-Asp-Val-Tyr-OH show only a weak stimulatory activity in respect to the humoral immunological response. These fragments contain the Arg-Gly-Asp (RGD) sequence, known for its importance for cellular association phenomena. Based on the crystal structure of HLA-DR1, we also designed and synthesized a cyclic analog H-Cys-Arg-Gly-Asp-Val-Tyr-Cys-OH with restricted conformation, which strongly suppresses the immune response and selectively inhibits the alphavbeta3 integrin, suggesting that the mechanism of the immunosuppressory action of the peptide is associated with inhibition of the integrin. In this paper we present the design and synthesis of the cyclodimeric peptide, Arg-Gly-Asp-Arg-Gly-Asp, which is also known as a selective alphavbeta3 inhibitor. The synthesized peptide strongly suppresses both the humoral and cellular immune response. The results support our hypothesis that the immunomodulatory activity of HLA-DQ fragments may be connected with their interactions with some particular integrins on the cell surface.  相似文献   

10.
The exotoxins of certain strains of Staphylococcus aureus strains are able both to stimulate potent proliferation and induce anergy in T lymphocytes expressing the appropriate T cell Ag receptor V beta gene elements. Although T cell activation by the S. aureus enterotoxins requires the presence of accessory cells bearing class II Ag of the MHC, unlike the peptide fragments of nominal Ag, they contact the external surfaces of both the class II MHC and TCR molecules. This paper investigates the immunologically active domains of S. aureus enterotoxin B (SEB) using truncated fragments of rSEB expressed as a fusion protein with protein A. The results of the experiments reported here indicate that the minimal fragment of SEB able to stimulate and induce anergy in hemagglutinin-reactive human T cells expressing V beta 3.1 gene elements is located in the amino-terminal portion of the molecule within residues 1-138. Deletion of the first 30 amino acid residues renders rSEB unable to stimulate T cells expressing V beta 3.1, whereas polyclonal T cells still respond to this molecule. This implies that the stimulation of several TCR-V beta families may be caused by the interaction with different regions of the toxin. The localization of immunologically active sites in the bacterial enterotoxins is needed to investigate both their biology and potential application as immunomodulatory agents.  相似文献   

11.
Resveratrol is a natural polyphenol found mainly on red grapes and in red wine, pointed as an important anti-inflammatory/immunomodulatory molecule. However, its bioavailability problems have limited its use encouraging the search for new alternatives agents. Thus, in this study, we synthetize 12 resveratrol analogues (6 imines, 1 thioimine and 5 hydrazones) and investigated its cytotoxicity, antioxidant activity and in vitro anti-inflammatory/immunomodulatory properties. The most promising compounds were also evaluated in vivo. The results showed that imines presented less cytotoxicity, were more effective than resveratrol on DPPH scavenger and exhibited an anti-inflammatory profile. Among them, the imines with a radical in the para position, on the ring B, not engaged in an intramolecular hydrogen-interaction, showed more prominent anti-inflammatory activity modulating, in vivo, the edema formation, the inflammatory infiltration and cytokine levels. An immunomodulatory activity also was observed in these molecules. Thus, our results suggest that imines with these characteristics presents potential to control inflammatory disorders.  相似文献   

12.
A series of zinc phthalocyanine having imidazolyl moieties was synthesized. These compounds’ immunostimulatory and immunomodulatory activities were tested on the mammalian macrophages in vitro. In the absence of photo induction neither dmso soluble nor the water soluble imidazole Pc had any immunostimulatory or immunomodulatory effect on the macrophage activity based on the differences in the pro-inflammatory cytokine secretion levels compared to the control groups. Upon photo induction, especially, at 5 min exposure time both derivatives lead to an increased pro-inflammatory cytokine secretion level by LPS activated macrophages. Whereas, this effect was completely reversed after 10 min of light treatment and both derivatives gained stark anti-inflammatory potential. Our molecules were cell penetrating and exerted their effects by regulating the phosphorylation levels of p38. This study is one of its first examples suggesting differential immunomodulatory photo dynamic therapy applications of phthalocyanine derivatives depending on light exposure time as well as their possible route of modulating the intracellular signaling pathways.  相似文献   

13.
A series of substituted derivatives containing the 1,4-benzodioxine or pyrrole nucleus are described. All the newly synthesized compounds were examined for their in vitro and in vivo anti-inflammatory activity. Several derivatives, including (S)-2, 14 and 17, showed more anti-inflammatory activity in vivo in these assays (rat paw oedema induced by carrageenan) than the known classical anti-inflammatory agent ibuprofen, whereas other compounds like 1 were equipotent to ibuprofen. Compound 17 was the most outstanding derivative because of its remarkable in vivo anti-inflammatory activity. In this paper, we examine and discuss the structure-activity relationships and anti-inflammatory activities of these compounds.  相似文献   

14.
Our previous studies revealed that ubiquitin and its decapeptide fragment with the LEDGRTLSDY sequence, located on the exposed molecule loop, strongly suppressed the immune response. This suggested that the loop may serve as a functional epitope of ubiquitin molecule and that a possible mechanism of biological action of the synthesized peptides is associated with interfering in interactions of ubiquitin with other molecules. Ubiquitin is known to exist in oligomeric forms, which can interact with various oligomeric receptors. We designed and synthesized new dimeric analogs of the ubiquitin fragment, to probe whether dimeric peptides may have higher affinity towards the ubiquitin receptors responsible for immunosuppression, which are believed to form oligomeric structures. Three dimerization strategies, N‐terminus to N‐terminus, C‐terminus to C‐terminus, and N‐terminus to C‐terminus (head‐to‐tail) via PEG derivatives were used to synthesize the dimeric peptides on solid support. In the course of our research, we developed a new and straightforward procedure of dimerization where α‐amino groups of the C‐terminal lysine residues of two peptide fragments were linked by PEG spacer directly on solid support. The effect of dimeric analogs on the immunological response was tested in the AFC in vitro experiment. The immunological tests showed that the head‐to‐tail dimerization caused a more profound increase in the biological activity than other tested dimerization methods. Our results suggest that such orientation of peptide components may correspond to orientation of the hypothetic ubiquitin receptors responsible for the immunomodulatory activity. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
I Z Siemion  I Strug  Z Wieczorek 《Peptides》1999,20(8):995-998
We have shown that the thymopoietin-like octapeptides derived from DNA-binding domain of p53 protein and of its mutated forms differ in their immunomodulatory properties. A strong increase of immunostimulative activity was observed for GMNRSPIL (mutated protein) in comparison with GMNRRPIL (wild-type of p53 protein) peptide. Here the elongated sequences of respective protein fragments were synthesized and investigated by plaque forming cells and delayed type hypersensitivity tests. The change of immunomodulatory activity toward immunosuppression was observed: NSSC(Acm)MGGMNRRPILTIITLE (1, wild-type) was inactive in both tests, and the C(Acm)MGGMNRSPILTIITLE (II) and YMC(Acm)NSSC(Acm)MGGMNRSPILTIITLE (III) (mutated p53 protein fragments) peptides produced immunosuppression in plaque forming cells as well as in delayed type hypersensitivity tests.  相似文献   

16.
Oleanolic acid has been isolated from chloroform extract of Olea ferruginea Royle after removal of organic bases and free acids. The literature survey revealed it to be biologically very important. In this review the biological significance of oleanolic acid and its derivatives has been discussed. The aim of this review is to update current knowledge on oleanolic acid and its natural and semisynthetic analogs, focussing on its cytotoxic, antitumer, antioxidant, anti-inflamatory, anti-HIV, acetyl cholinesterase, alpha-glucosidase, antimicrobial, hepatoprotective, anti-inflammatory, antipruritic, spasmolytic activity, anti-angiogenic, antiallergic, antiviral and immunomodulatory activities. We present in this review, for the first time, a compilation of the most relevant scientific papers and technical reports of the chemical, pre-clinical and clinical research on the properties of oleanolic acid and its derivatives.  相似文献   

17.
GAP-43 protein of nerve terminals (B-50, F1, F57, pp46, neuromodulin) is thought to be one of key proteins involved in the control of outgrowth of neurites, release of neuromediators, synapse plasticity, etc. GAP-43 is usually considered as a whole protein. Along with the intact protein, nerve cells also contain two large native fragments of GAP-43 deprived of four or of about forty N-terminal amino acid residues (GAP-43-2 and GAP-43-3, respectively). The full-length GAP-43 is predominant in the mature brain. However, the ratio of the full-length protein and its fragments can vary under different physiological conditions. Changes in the GAP-43 proteins (the full-length protein and its fragments) were studied during embryonal and postnatal development of rat brain. The GAP-43 proteins were found to be expressed not later than on the 12-13th day of embryogenesis. Then their contents increased, and, until the 10th day after birth, GAP-43-3 dominated rather than the full-length protein. It is suggested that during this period the activity of a specific protease, which cleaves the N-terminal peptide of about 40 residues from the full-length GAP-43 molecule, is increased. The cleavage occurs in the region responsible for the interaction of GAP-43 with calmodulin. In the full-length molecule, this region is responsible also for the recognition of Ser41 residue by protein kinase C during phosphorylation. Another functionally important region that determines, in particular, the attachment of GAP-43 to the plasma membrane is cleaved from the main part of the molecule together with the N-terminal peptide. Thus, the specific fragmentation of GAP-43 that depends on developmental stage should be considered as a controlled structural rearrangement fundamentally affecting the functions of this protein.  相似文献   

18.
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.  相似文献   

19.
In order to define further the chemical features of the human placental lactogen (hPL) molecule responsible for its lactogenic activity, two derivatives of the hormone were prepared by treatment with BNPS-skatole (2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine). At a molar ratio of reagent to hPL of 7:1, a derivative was produced in which the single tryptophan was completely oxidized. At higher ratios, a second derivative was formed in which the peptide chain was cleaved at the tryptophan residue and the two resulting fragments remained bound by the disulfide bond between Cys53 and Cys165. Oxidation of the single tryptophan resulted in reduced immunologic activity, reduced helical content as measured by circular dichroism below 240 nm, and changes in the near-UV circular dichroic spectrum, each indicating a change in the conformation of the hPL molecule. Nevertheless, this derivative retained 20% of its ability to bind to lactogenic receptors and 40 to 50% of its ability to stimulate N-acetyllactosamine synthetase in vitro. Cleavage at the tryptophan was not complete, but the loss of immunologic and biologic activity was equivalent to the degree of cleavage, indicating that the cleaved derivative was completely inactive. In addition, separation of the cleaved fragments from intact hormone followed by recombination did not generate any immunologic or biologic activity. We conclude that the single tryptophan of hPL is not essential for the biologic activity of hPL. It is likely that the reduced activity associated with modification or cleavage at the tryptophan residue is due to changes in the conformation of the molecule.  相似文献   

20.
Synthetic peptides corresponding to the C-terminal region of angiogenin (Ang) inhibit the enzymatic and biological activities of the molecule while peptides from the N-terminal region do not affect either activity. The peptide Ang(108-121) transiently abolishes the inhibition of cell-free protein synthesis caused by angiogenin coincidentally with its cleavage of reticulocyte RNA. Several C-terminal peptides also inhibit nuclease activity of angiogenin when tRNA is the substrate. Furthermore, peptide Ang(108-123) significantly decreases neovascularization elicited by angiogenin in the chick chorioallantoic membrane assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号