首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed report is presented on the performance of the postimplantation rat whole-embryo culture (WEC) test in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the WEC test can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.  相似文献   

2.
A detailed report is presented on the performance of the embryonic stem cell test (EST) in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the EST can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.  相似文献   

3.
The European Centre for the Validation of Alternative Methods (ECVAM) has sponsored a large international prevalidation and validation study of three embryotoxicity tests, involving embryonic stem cells, limb bud micromass cultures, and post-implantation whole-embryo cultures. The main objective of the study was to assess the performance of these in vitro tests in discriminating between non-embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. An initial part of the study was to select 20 test substances for the formal validation trial, conducted under blind conditions. A database of in vivo and in vitro developmental toxicity test results was complied on 310 chemicals that had been used in previous validation studies, or suggested for such use, or that had good quality "segment II"-type in vivo data, or for which there were human data. From this database, a shortlist of about 30 candidates was constructed. Because the ECVAM study would not include metabolic activation, chemicals known to require activation for their developmental effects were excluded as candidates, although some known stable metabolites were included. Attempts were made: to include substances of diverse mechanism; to avoid overemphasis on pharmaceuticals; to avoid biologically inert substances as non-embryotoxicants; and to make the list different from those used previously. The candidates were of three categories: Class 3, strongly embryotoxic, was defined as developmentally toxic in all species tested, inducing multiple developmental effects, and with a high A/D ratio. Class 1, non-embryotoxic, was defined as not developmentally toxic at maternally toxic exposures, but which may show some minor embryo/fetal toxicity, which cannot be separated from maternal toxicity. Class 2, weakly embryotoxic, were chemicals of intermediate activity. From this candidate list, chemicals of known receptor (androgen, oestrogen, glucocorticoid, aryl hydrocarbon) mechanisms were excluded, on the basis that simple tests for such activity are already available. In addition, chemicals not freely available were excluded, and an emphasis on human data was applied. The final list of 20 chemicals was: Class 3--6-aminonicotinamide, 5-bromo- 2'-deoxyuridine, hydroxyurea, methylmercury chloride, methotrexate, all-trans-retinoic acid; Class 2--boric acid, dimethadione, lithium chloride, methoxyacetic acid, valproic acid (VPA), 2-propyl-4-pentynoic acid (4-yn-VPA), salicylic acid sodium salt; and Class 1--acrylamide, D-(+)-camphor, dimethyl phthalate, diphenhydramine hydrochloride, 2-ethyl-4- methylpentanoic acid (isobutyl-ethyl-VPA), Penicillin G sodium salt, saccharin sodium hydrate.  相似文献   

4.
The ECVAM-funded skin irritation validation study (SIVS) was initiated in 2003, with the aim to evaluate whether the EpiDerm, EPISKIN and the SIFT alternative methods were able to reliably identify skin irritant and non-irritant chemicals, and could therefore be candidates for replacing the rabbit Draize test for skin irritation. The primary goal of the study was to evaluate the predictive capacity of the assays with regard to the EU classification system, which employs the risk phrases, "R38", for skin irritants, and "no label" for non-irritants. A secondary objective was the retrospective analysis of the data, to assess whether the in vitro tests would be able to discriminate between strong irritants (category 2), mild irritants (category 3) and non-irritants (no category), as defined by the OECD and United Nations proposal for a Globally Harmonised System (GHS) for the classification and labelling of dermal irritancy. A Chemicals Selection Sub-Committee (CSSC) was appointed to identify test chemicals to be used in the SIVS, for which existing, high quality in vivo data were available, with which to correlate the in vitro measurements. Since chemicals from the European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) database of reference chemicals for skin irritation/skin corrosion had been extensively used in preceding studies, the CSSC made use of novel sources for potential test chemicals. The first source of chemicals screened was the New Chemicals Database (NCD), which is the central archive within the EU notification scheme for 'new' commercial chemicals. Data registered in the NCD originate from standard assays, submitted in compliance with the legislation which regulates the marketing of industrial chemicals, and are subject to quality assurance by the competent authorities of the EU Member States. In addition, to obtain 'existing' chemicals which were readily available from major manufacturing and/or distribution sources, additional databases were surveyed, such as the Toxic Substance Control Act (TSCA) database maintained by the US Environmental Protection Agency (EPA), and the ECETOC database, with the exclusion of the chemicals used in the previous optimisation and prevalidation phases. A total of approximately 3500 chemicals from the NCD and 1600 from the additional databases were screened. Pre-determined selection criteria were applied, primarily to ensure the quality of the in vivo data and the practicability of their use in testing. Overall, the number of chemicals fulfilling the CSSC selection criteria was found to be limited, particularly in the case of GHS category 2 chemicals. However, a total set of 60 chemicals were selected and proposed to the Management Team of the SIVS for independent coding and supply to the participating laboratories. The selected chemicals: i) represented statistically justified sample sizes for distinguishing R38 from no-label chemicals; ii) provided a balanced representation of the three GHS categories, to allow for the post hoc evaluation of the performance of the assays for that classification system; and iii) acknowledged, to a certain degree, the large prevalence known to exist for chemicals which have oedema and erythema scores of 0. The selected chemicals represented a variety of molecular structures, functional chemical groups, and effect and use categories, as well as a wide range of physico-chemical properties. They represented a challenging set of chemicals, relevant to current industrial commerce, with which to validate the alternative methods.  相似文献   

5.
From 1996 to 2000, ZEBET (Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments at the BgVV, Berlin, Germany) coordinated the European Centre for the Validation of Alternative Methods (ECVAM) prevalidation and validation study on three embryotoxicity tests: a) a test employing embryonic stem cell lines (EST); b) the micromass (MM) test; and c) the postimplantation rat whole-embryo culture assay (WEC test). The main objectives of the study were to assess the performance of these three in vitro tests in discriminating between non- embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. Phase I of the study (1997) was designed as a prevalidation phase, for test protocol optimisation, and for the establishment of a comprehensive database of in vivo and in vitro data on embryotoxic compounds. Phase II (1998-2000) involved a formal validation trial, conducted under blind conditions on 20 test compounds selected from the database, which were coded and distributed to the participating laboratories. In the preliminary phase of the validation study, six chemicals out of the 20, which showed embryotoxic potential, were tested. These results were used to define new biostatistically based prediction models (PMs) for the MM and WEC tests, and to evaluate those developed previously for the EST. As a next step, the PMs were evaluated by using the results for the remaining 14 chemicals of the definitive phase of the validation study. The three in vitro embryotoxicity tests proved to be applicable to testing a diverse group of chemicals with different embryotoxic potentials (non-embryotoxic, weakly embryotoxic, and strongly embryotoxic). The reproducibility of the three in vitro embryotoxicity tests were acceptable according to the acceptance criteria defined by the Management Team. The concordances between the embryotoxic potentials derived from the in vitro data and from the in vivo data were good for the EST and the WEC (PM2) test, and sufficient for the MM test and the WEC (PM1) tests according to the performance criteria defined by the Management Team before the formal validation study. When applying the PM of the EST to the in vitro data obtained in the definitive phase of the formal validation study, chemicals were classified correctly in 78% of the experiments. For the MM and the WEC tests, the PMs provided 70% and 80% (PM2) correct classifications, respectively. And, very importantly, an excellent predictivity (100%, except for PM1 of the WEC test, with 79%, considered as good) was obtained with strong embryotoxic chemicals in each of the three in vitro tests.  相似文献   

6.
7.
Glutathione (GSH) is the primary source of reducing equivalents in most cells, contributes significantly to the cellular redox potential and can control differentiation, proliferation, and apoptosis. Using limb bud micromass cultures from Sprague Dawley rats and New Zealand White rabbits, GSH modulating agents, L-buthionine-S,R-sulfoximine (BSO) and diethyl maleate (DEM) altered the formation of Alcian blue positive chondrogenic foci. Limb bud micromass cultures were treated for 5 d with BSO (50 or 100 μM) or DEM (5–25 μM). GSH content was determined by HPLC analysis. In rat cultures, BSO treatment did not affect differentiation but did show GSH depletion. In rabbit cultures, BSO completely inhibited differentiation and significantly depleted GSH. Treatment of rat cultures with DEM resulted in the dose-dependent decrease of chondrogenic foci, which correlated with a dose-dependent depletion of GSH. DEM completely inhibited rabbit limb bud cell differentiation and depleted GSH by 44%. Inhibition of differentiation was confirmed in rabbit cultures by the reduction in BMP-4 content. Addition of N-acetylcysteine to rabbit micromass cultures restored chondrogenic foci differentiation seen following treatment with both DEM and BSO. These results show species differences in GSH depletion in rat vs. rabbit limb bud cells and implicate GSH and cysteine in affecting pathways involved in chondrocyte differentiation.  相似文献   

8.
During the past decade, several validation studies have been conducted on in vitro methods for discriminating between skin irritating and non-irritating chemicals. The reconstructed human skin models, EpiDerm and EPISKIN, provided the most promising results. Based on experience of the similar performance of the two skin models, it was suggested that a common test protocol and prediction model should be developed for the prediction of skin irritation potential with the two models. When the EPISKIN protocol was applied with the EpiDerm model, an acceptable specificity (80%) was achieved, whereas the sensitivity (60%) was low. In 2003, the EPISKIN protocol was further refined by extending the post-incubation period following exposure to test chemicals. This extension and additional technical improvements to the EpiDerm protocol were evaluated with 19 chemicals from the prevalidation study. With the new test design, high sensitivity (80%) and specificity (78%) were obtained. The statistical probability for correct classifications was high, so the test was considered to be ready for formal validation. However, since test optimisation had been conducted with the same test chemicals as were used in the ECVAM prevalidation study, it was decided that the optimisation of the protocol had to be verified with a new set of chemicals. Thus, in the current study, 26 additional chemicals (10 rabbit irritants and 16 non-irritants), which had previously been selected and tested by LOREAL with EPISKIN, were evaluated in three independent experiments with EpiDerm. With this unbalanced testing set, a specificity of 94%, and a sensitivity of 60% were obtained, while the positive and negative predictivity and accuracy remained almost unchanged (around 80%) in comparison to the in vivo rabbit data. Overall, 45 chemicals (20 irritants and 25 non-irritants) were tested according to the final protocol. The resulting high positive (82%) and negative predictive values (79%) confirmed the reliability (accuracy of 80%) of the improved test protocol of the EpiDerm model.  相似文献   

9.
ECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e. non-irritant). 58 chemicals (25 irritants and 33 non-irritants) were tested, having been selected to give broad coverage of physico-chemical properties, and an adequate distribution of irritancy scores derived from in vivo rabbit skin irritation tests. In Phase 1, 20 of these chemicals (9 irritants and 11 non-irritants) were tested with coded identities by a single lead laboratory for each of the methods, to confirm the suitability of the protocol improvements introduced after a prevalidation phase. When cell viability (evaluated by the MTT reduction test) was used as the endpoint, the predictive ability of both EpiDerm and EPISKIN was considered sufficient to justify their progression to Phase 2, while the predictive ability of the SIFT was judged to be inadequate. Since both the reconstituted skin models provided false predictions around the in vivo classification border (a rabbit Draize test score of 2), the release of a cytokine, interleukin-1alpha (IL-1alpha), was also determined. In Phase 2, each human skin model was tested in three laboratories, with 58 chemicals. The main endpoint measured for both EpiDerm and EPISKIN was cell viability. In samples from chemicals which gave MTT assay results above the threshold of 50% viability, IL-1alpha release was also measured, to determine whether the additional endpoint would improve the predictive ability of the tests. For EPISKIN, the sensitivity was 75% and the specificity was 81% (MTT assay only); with the combination of the MTT and IL-1alpha assays, the sensitivity increased to 91%, with a specificity of 79%. For EpiDerm, the sensitivity was 57% and the specificity was 85% (MTT assay only), while the predictive capacity of EpiDerm was not improved by the measurement of IL-1alpha release. Following independent peer review, in April 2007 the ECVAM Scientific Advisory Committee endorsed the scientific validity of the EPISKIN test as a replacement for the rabbit skin irritation method, and of the EpiDerm method for identifying skin irritants as part of a tiered testing strategy. This new alternative approach will probably be the first use of in vitro toxicity testing to replace the Draize rabbit skin irritation test in Europe and internationally, since, in the very near future, new EU and OECD Test Guidelines will be proposed for regulatory acceptance.  相似文献   

10.
Summary To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.  相似文献   

11.
Distal chick wing bud mesenchyme from stages 19 to 27 embryos has been grown in micromass culture. The behavior of cultures comprising mesenchyme located within 350 microns of the apical ectodermal ridge (distal zone mesenchyme) was compared to that of cultures of the immediately proximal mesenchyme (subdistal zone cultures). In cultures of the distal mesenchyme from stages 21-24 limbs, all of the cells stained immunocytochemically for type II collagen within 3 days, indicating ubiquitous chondrogenic differentiation. At stage 19 and 20, this behavior was only observed in cultures of the distal most 50-100 microns of the limb bud mesenchyme. Between stages 25 and 27, distal zone cultures failed to become entirely chondrogenic. At all stages, subdistal zone cultures always contained substantial areas of nonchondrogenic cells. The different behavior observed between distal zone and corresponding subdistal zone cultures appears to be a consequence of the presence of somite-derived presumptive muscle cells in the latter, since no such difference was observed in analagous cultures prepared from muscle-free wing buds. The high capacity of the distal zone for cartilage differentiation supports a view of pattern formation in which inhibition of cartilage is an important component. However, its consistent behavior in vitro indicates that micromass cultures do not reflect the in vivo differences between the distal zones at different stages. The subdistal region retains a high capacity of cartilage differentiation and the observed behavior in micromass reflects interactions with a different cell population.  相似文献   

12.
The effect of two exoglycosidases, beta-galactosidase and N-acetyl-beta-glucosaminidase (GlcNAc-ase) on chondrogenic expression of stage 19 mouse limb bud micromass cultures was investigated. Chondrogenic expression was monitored by Alcian blue staining and immunofluorescent localization of cartilage-specific proteoglycan and type II collagen. Chondrogenesis was inhibited by exposure to 0.1 U/ml beta-galactosidase or 0.025 U/ml GlcNAc-ase for 24 h or longer in culture. The effect of both enzymes was concentration and time dependent. Exoglycosidic hydrolysis of galactose or N-acetylglucosamine was substantiated by treatment with HRP-conjugated peanut agglutinin and succinylated wheat germ agglutinin, respectively. Cells treated with beta-galactosidase appeared to be flattened with a stellate morphology, whereas GlcNAc-ase-treated cells were bipolar forming ridge-like mounds that had a directional orientation. The antichondrogenic effect was not alleviated when the cells were induced to assume a spherical shape upon treatment with cytochalasin D. DNA measurements indicated that the lack of chondrogenic expression was not related to cell attachment or cell proliferation. These data support the hypothesis that the expression of specific terminal sugars on cell surface glycoconjugates of limb bud cells represents an important component of the chondrogenic process.  相似文献   

13.
14.
The effect of avian retroviruses on limb bud chondrogenesis in vitro   总被引:3,自引:0,他引:3  
J L Gross  D B Rifkin 《Cell》1979,18(3):707-718
Mesenchymal cells isolated from stage 24 embryonic chicken limb buds were infected with the temperature-sensitive transformation mutants of Rous sarcoma virus tsNY68, tsNY10 and tsLA25 at the nonpermissive temperature for transformation (41 degrees C). Virus infection greatly inhibited subsequent limb bud chondrogenesis under nontransforming conditions, as indicated by a reduction in the rate of 35SO4 incorporation into cell-associated proteoglycans. The inhibition of chondrogenesis was directly related to the percentage of cells infected with tsNY68 at 41 degrees C. The observed inhibition of chondrogenesis was independent of src gene expression since this effect was also caused by many viruses which lack the src gene, including the leukosis viruses RAV-1, RAV-2 and MAV-2(0); the src deletion mutant RSVtd107; and the reticuloendotheliosis viruses REV-T and SNV. Infection of mesenchymal cells with tsNY68 under nontransforming conditions did not cause changes in parameters such as the rate of thymidine incorporation, total cell DNA and total cell protein. Infection with tsNY68 at 41 degrees C resulted in altered kinetics of 35SO4 incorporation into cell-associated proteoglycans and a corresponding reduction in 35SO4-labeled proteoglycans extracted from the cell layer. There were no apparent quantitative effects on the rate of accumulation of proteoglycans in the culture medium. The proteoglycans extracted from the cells and the collected medium of tsNY68-infected cultures were smaller than those of uninfected cultures, as shown by agarose gel chromatography.  相似文献   

15.
The European Centre for the Validation of Alternative Methods (ECVAM) Skin Irritation Task Force was established in 1996, to review the status of the development and validation of alternative tests for skin irritation and corrosion, and to identify appropriate non-animal tests for predicting human skin irritation that were sufficiently well-developed to be prevalidated and validated by ECVAM. The EpiDerm method, based on a reconstituted human skin model, was proposed as being sufficiently well advanced to enter a prevalidation (PV) study. Based on a review of test protocols, prediction models (PMs), and data submitted by test developers on ten specified chemicals, with 20% sodium lauryl sulphate as a reference standard, the task force recommended the inclusion of four other tests: EPISKIN and PREDISKIN, based on reconstituted human epidermis or on human skin; the non-perfused pig-ear test, based on pig skin; and the skin integrity function test (SIFT), with ex vivo mouse skin. The prevalidation study on these methods was funded by ECVAM, and took place during 1999-2000. The outcome of the PV study was that none of the methods was ready to enter a formal validation study, and that the protocols and PMs of the methods had to be improved in order to increase their predictive abilities. Improved protocols and PMs for the EpiDerm and EPISKIN methods, the pig ear test, and the SIFT were presented at an extended Task Force meeting held in May 2001. It was agreed that, in the short term, the performance of the revised and harmonised EpiDerm and EPISKIN methods, as well as the modified SIFT, should be evaluated in a further study with a new set of 20 test chemicals. In addition, it was decided that the SIFT and the pig ear test would be compared to see if common endpoints (transepidermal water loss, methyl green-pyronine stain) could be identified.  相似文献   

16.
The in vitro embryotoxicity of 5-fluorouracil in rat embryos   总被引:1,自引:0,他引:1  
The fluorinated pyrimidine 5-fluorouracil (5-FU) is an effective chemotherapeutic agent that is teratogenic in a number of species. The mechanism for the embryopathic effect of the drug is unknown. We examined the effects of this compound on gestation day 10.5 rat embryos cultured for 48 hours in a rodent whole embryo culture system. Embryos were exposed for 1-4 hours to various doses of 5-FU. Embryolethality was minimal in all treatment groups. The malformation frequency increased with higher doses; within a dose, the malformation frequency increased with longer exposure to the drug. The tail and hindlimb bud were the most commonly affected structures in vitro; tail and leg defects are produced in several species by exposure to the drug in vivo. The embryopathic drug concentration in the culture media (2-8 micrograms/ml) is similar to the plasma level of 2-17 micrograms/ml, which is associated with embryopathy in vivo. Results from this study suggest that the whole embryo culture system is an appropriate model for developmental toxicity studies of 5-FU.  相似文献   

17.
Summary In an effort to establish a more chemically defined culture system to study the regulation of chondrogenic differentiation in vitro, two commercially available serum replacements, NuSerum and NuSerum IV, were tested on embryonic limb mesenchyme. Limb bud (LB) mesenchymal cells were isolated from Hamilton-Hamburger stage 23–24 chick embryos and plated at various densities (1, 5, 10, or 20 × 106 cells/ml) in micromass culture for 4 days in media supplemented with 10% fetal bovine serum (FBS), NuSerum or NuSerum IV. Cell growth was assessed by the incorporation of [3H]leucine and [3H]thymidine. Chondrogenesis was determined by the incorporation of [35S]sulfate and by the number of Alcian blue-staining cartilage nodules. In high density (20 × 106 cells/ml) cultures, which favored chondrogenic differentiation, both serum replacements supported protein synthesis and chondrogenesis equally well as FBS. In cultures plated at 5 × 106 cells/ml, a cell density in which was chondrogenesis-limiting, both NuSerum and NuSerum IV significantly enhanced incorporation of [35S]sulfate (2.6-fold), [3H]leucine (1.4-fold), and [3H]thymidine (1.9-fold), compared to FBS. Enhancement of chondrogenesis was also apparent by the increases in the number of Alcian blue-staining cartilage nodules and the ratio of sulfate: leucine incorporation in cultures plated at 5 × 106 cells/ml. Interestingly, the localization of cartilage nodules was extended out to the periphery of micromass cultures fed with NuSerum or NuSerum IV. The observed effects of NuSerum and NuSerum IV may be attributed to a combination of factors, including lower concentrations of serum and its associated proteins, as well as supplemented growth factors and hormones known to promote cell proliferation and differentiation. Therefore, NuSerum and NuSerum IV are excellent, low-cost replacements for FBS in maintaining cellular growth and promoting chondrogenesis in LB mesenchymal cell cultures in vitro.  相似文献   

18.
The relationship between cellular position and growth control has been studied in cultures of dissociated fragments of mouse limb bud cells. Using cells derived from various positions along the anterior-posterior axis of the limb bud we have developed culture conditions that optimize growth of positionally isolated cells. Under these conditions limb bud cells display an inherent, position-specific growth response; proliferation of cells derived from anterior and central regions of the limb is enhanced over that of posterior derived cells. Thus, within the total population of limb bud cells the in vitro growth of posterior cells is unique and correlates with the positional activity associated with the zone of polarizing activity. Anterior and posterior cells were cocultured to determine whether interactions between these two groups of positionally distinct cells lead to the stimulation of growth that has been observed in vivo. We observe a slight but consistent position-dependent stimulation of growth that is indicative of a mitogenic signal passing between these positionally disparate cells. Similarities between position-related growth dynamics in vivo and in vitro suggest that positional interactions that are important for limb formation can occur between dissociated cells cultured under standard conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号