共查询到20条相似文献,搜索用时 15 毫秒
1.
Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. 总被引:8,自引:4,他引:8 下载免费PDF全文
Pyoverdine-mediated iron transport was determined for seven fluorescent Pseudomonas strains belonging to different species. For all strains, cell or cell outer membrane and iron(III)-pyoverdine combinations were compared with their homologous counterparts in uptake, binding, and cross-feeding experiments. For four strains (Pseudomonas putida ATCC 12633, Pseudomonas fluorescens W, P. fluorescens ATCC 17400, and Pseudomonas tolaasii NCPPB 2192), the pyoverdine-mediated iron transport appeared to be strictly strain specific; pyoverdine-facilitated iron uptake by iron-starved cells and binding of ferripyoverdine to the purified outer membranes of such cells were efficient only in the case of the homologous systems. Cross-feeding assays, in liquid or solid cultures, resulted, however, especially for P. fluorescens ATCC 17400, in some discrepancies compared with uptake and binding assays, suggesting that growth experiments are the least likely to yield correct information on specificity of the pyoverdine-mediated iron transport. For the three other strains (P. fluorescens ATCC 13525, P. chlororaphis ATCC 9446, and P. aeruginosa ATCC 15692), cross-reactivity was demonstrated by the uptake, binding, and cross-feeding experiments. In an attempt to determine which parts of the iron transport system were responsible for the specificity, the differences in amino acid composition of the pyoverdines, together with the differences observed at the level of the iron-sensitive outer membrane protein pattern of the seven strains, are discussed. 相似文献
2.
Fluorescent Pseudomonas species are characterized by the production of pyoverdin-type siderophores for Fe3+ acquisition in iron-limited environments. Since it produces a structurally specific pyoverdin, Pseudomonas putida strain BTP1 could represent a valuable tool in an attempt to correlate the structural features of these compounds with some specificity in their two main properties i.e. affinity for iron and recognition rate by other Pseudomonas strains. An uncommonly high affinity for iron of the pyoverdin synthetized by P. putida BTP1 was observed by comparing both the apparent stability constant and the decomplexation kinetic of its ferric complex with those of ferripyoverdins from other strains. On another hand, results from growth stimulation experiments and labeled ferripyoverdin uptake assays highlighted the very low recognition rate of BTP1 isopyoverdins by membrane receptors of foreign strains. By contrast, P. putida BTP1 was able to utilize a broad spectrum of structurally unrelated exogenous pyoverdins by means of multiple receptors that are likely constitutively expressed in its outer membrane. The unusual traits of its pyoverdin-mediated iron acquisition system should contribute to enlarge the ecological competence of Pseudomonas putida BTP1 in terms of colonization and persistence in the rhizosphere. 相似文献
3.
Sandra Matthijs Georges Laus Jean-Marie Meyer Kourosch Abbaspour-Tehrani Mathias Schäfer Herbert Budzikiewicz Pierre Cornelis 《Biometals》2009,22(6):951-964
Pseudomonas entomophila L48 is a recently identified entomopathogenic bacterium which, upon ingestion, kills Drosophila melanogaster, and is closely related to P. putida. The complete genome of this species has been sequenced and therefore a genomic, genetic and structural analysis of the siderophore-mediated
iron acquisition was undertaken. P. entomophila produces two siderophores, a structurally new and unique pyoverdine and the secondary siderophore pseudomonine, already described
in P. fluorescens species. Structural analysis of the pyoverdine produced by the closely related P. putida KT2440 showed that this strain produces an already characterised pyoverdine, but different from P. entomophila, and no evidence was found for the production of a second siderophore. Growth stimulation assays with heterologous pyoverdines
demonstrated that P. entomophila is able to utilize a large variety of structurally distinct pyoverdines produced by other Pseudomonas species. In contrast, P. putida KT2440 is able to utilize only its own pyoverdine and the pyoverdine produced by P. syringae LMG 1247. Our data suggest that although closely related, P. entomophila is a more efficient competitor for iron than P. putida. 相似文献
4.
Pyoverdines (PVDs) are complex siderophores produced by members of the fluorescent Pseudomonas. They comprise a dihydroxyquinoline fluorescent chromophore joined to a peptide of remarkably variable length and composition. In Pseudomonas aeruginosa, PVDs also function as signal molecules for the production of virulence factors. Genes responsible for the biosynthesis, excretion, uptake and regulation of these high-affinity siderophores are located either at a single locus or at up to three different loci in the genomes of the four pseudomonads analyzed. The peptide backbone of PVD is assembled by non-ribosomal peptide synthetases (NRPSs) and modified by accessory enzymes in the cytoplasm, and probably the periplasm. Regulation of PVD production and uptake depends on two extracytoplasmic sigma factors (ECF-sigmas), PvdS and FpvI, together with one anti-sigma, FpvR. 相似文献
5.
Unsaturated biofilms of Pseudomonas putida, i.e., biofilms grown in humid air, were analyzed by atomic force microscopy to determine surface morphology, roughness, and adhesion forces in the outer and basal cell layers of fresh and desiccated biofilms. Desiccated biofilms were equilibrated with a 75.5% relative humidity atmosphere, which is far below the relative humidity of 98 to 99% at which these biofilms were cultured. In sharp contrast to the effects of drying on biofilms grown in fluid, we observed that drying caused little change in morphology, roughness, or adhesion forces in these unsaturated biofilms. Surface roughness for moist and dry biofilms increased approximately linearly with increasing scan sizes. This indicated that the divides between bacteria contributed more to overall roughness than did extracellular polymeric substances (EPS) on individual bacteria. The EPS formed higher-order structures we termed mesostructures. These mesostructures are much larger than the discrete polymers of glycolipids and proteins that have been previously characterized on the outer surface of these gram-negative bacteria. 相似文献
6.
Iron uptake from ferrated (59Fe) pseudobactin (PSB), a Pseudomonas putida siderophore, by various plant species was studied in nutrient solution culture under short term (10 h) and long term (3 weeks) conditions. In the short term experiments, 59Fe uptake rate from 59FePSB by dicots (peanuts, cotton and sunflower) was relatively low when compared with 59Fe uptake rate from 59FeEDDHA. Iron uptake rate from 59FePSB was pH and concentration dependent, as was the Fe uptake rate from 59FeEDDHA. The rate was about 10 times lower than that of Fe uptake from the synthetic chelate. Results were similar for long term experiments.Monocots (sorghum) in short term experiments exhibited significantly higher uptake rate of Fe from FePSB than from FeEDDHA. In long term experiments, FePSB was less efficient than FeEDDHA as an Fe source for sorghum at pH 6, but the same levels of leaf chlorophyll concentration were obtained at pH 7.3.Fe uptake rates by dicots from the siderophore and FeEDDHA were found to correlate with Fe reduction rates and reduction potentials (E0) of both chelates. Therefore, it is suggested that the reduction mechanism governs the Fe uptake process from PSB by dicots. Further studies will be conducted to determine the role of pH in Fe aquisition from PSB by monocots. 相似文献
7.
Cold-Sensitive Mutation of Pseudomonas putida Affecting Enzyme Synthesis at Low Temperature 总被引:2,自引:4,他引:2 下载免费PDF全文
A cold-sensitive mutant of Pseudomonas putida has been isolated which grows normally at 30 C but is unable to grow on mandelate as a source of carbon at 15 C. The mutation results in the inability of the strain to carry out the reaction catalyzed by cis,cis-muconate lactonizing enzyme at low temperature and must lie in the structural gene for that enzyme, because the mutant enzyme produced at 30 C shows altered thermal stability. The mutant enzyme is not intrinsically cold-labile, nor is it cold-labile at the moment of synthesis. The activity of the mutant enzyme is not inhibited at low temperature. Evidence is presented to establish that this mutation in the structural gene coding for cis,cis-muconate lactonizing enzyme results in the lack of expression of that gene at low temperature. 相似文献
8.
Siderophore-based iron acquisition and pathogen control. 总被引:6,自引:0,他引:6
9.
10.
Summary In P. putida the first four enzymes involved in the dissimilation of histidine are induced by the first intermediate of the pathway, urocanic acid. The genes specifying these enzymes, hutH, hutU, hutF and (probably) hutI appear to be clustered on the chromosome between pcaE and pcaA (genes involved in p-hydroxybenzoic acid catabolism). Two mutants which produce the histidine-dissimilitory enzymes constitutively have been isolated. They appear to carry mutations in a regulatory locus, which maps in the same region as the structural genes of the pathway. 相似文献
11.
Delta-aminovaleramidase of Pseudomonas putida 总被引:4,自引:0,他引:4
12.
Pseudomonads are considered to be among the most widespread culturable bacteria in mesophilic environments. The evolutive success of Pseudomonas species can be attributed to their metabolic versatility, in combination with a set of additional functions that enhance their ability to colonize different niches. These include the production of secondary metabolites involved in iron acquisition or having a detrimental effect on potential competitors, different types of motility, and the capacity to establish and persist within biofilms. Although biofilm formation has been extensively studied using the opportunistic pathogen Pseudomonas aeruginosa as a model organism, a significant body of knowledge is also becoming available for non-pathogenic Pseudomonas. In this review, we focus on the mechanisms that allow Pseudomonas putida to colonize biotic and abiotic surfaces and adapt to sessile life, as a relevant persistence strategy in the environment. This species is of particular interest because it includes plant-beneficial strains, in which colonization of plant surfaces may be relevant, and strains used for environmental and biotechnological applications, where the design and functionality of biofilm-based bioreactors, for example, also have to take into account the efficiency of bacterial colonization of solid surfaces. This work reviews the current knowledge of mechanistic and regulatory aspects of biofilm formation by P. putida and pinpoints the prospects in this field. 相似文献
13.
14.
Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation. 总被引:1,自引:1,他引:1 下载免费PDF全文
Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character. 相似文献
15.
The 6-fluorotryptophan resistant MR1 mutant was obtained from Pseudomonas putida M30 (Tyr- Phe-) strain. The mutant was able to excrete tryptophan (60 micrograms/ml) and has derepressed aroF gene encoding 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase. The mutation isolated was identified as aroR with the help of cloning early aroF gene of P. putida. On the next step of selection, regulatory mutant MR2 was obtained producing 240 micrograms/ml of tryptophan. The MR2 has derepressed unlinked trpE and trpDC genes and represents a mutant of the trpR type. Expression of the trpE gene of P. putida MR2 weakened in the presence of tryptophan excess in the medium, which points to attenuation of this gene. From the prototrophic variant of P. putida MR2 the MRP3 mutant producing 850 micrograms/ml of tryptophan was obtained. This mutant was characterized by twofold increase in the activity of the anthranilate synthase encoded by the trpE gene. The assay of the activity of tryptophanyl-tRNA synthase in P. putida MRP3 demonstrated that the mutant has TrpS+ phenotype. 相似文献
16.
The cellular levels of the alternative sigma factor sigma(54) of Pseudomonas putida have been examined in a variety of growth stages and culture conditions with a single-chain Fv antibody tailored for detection of scarce proteins. The levels of sigma(54) were also monitored in P. putida strains with knockout mutations in ptsO or ptsN, known to be required for the C-source control of the sigma(54)-dependent Pu promoter of the TOL plasmid. Our results show that approximately 80 +/- 26 molecules of sigma(54) exist per cell. Unlike that in relatives of Pseudomonas (e.g., Caulobacter), where fluctuations of sigma(54) determine adaptation and differentiation when cells face starvation, sigma(54) in P. putida remains unexpectedly constant at different growth stages, in nitrogen starvation and C-source repression conditions, and in the ptsO and ptsN mutant strains analyzed. The number of sigma(54) molecules per cell in P. putida is barely above the predicted number of sigma(54)-dependent promoters. These figures impose a framework on the mechanism by which Pu (and other sigma(54)-dependent systems) may become amenable to physiological control. 相似文献
17.
18.
Iasson E. P. Tozakidis Lena M. Lüken Alina Üffing Annika Meyers Joachim Jose 《Microbial biotechnology》2020,13(1):176-184
Pseudomonas putida can be used as a host for the autotransporter-mediated surface display of enzymes (autodisplay), resulting in whole-cell biocatalysts with recombinant functionalities on their cell envelope. The efficiency of autotransporter-mediated secretion depends on the N-terminal signal peptide as well as on the C-terminal translocator domain of autotransporter fusion proteins. We set out to optimize autodisplay for P. putida as the host bacterium by comparing different signal peptides and translocator domains for the surface display of an esterase. The translocator domain did not have a considerable effect on the activity of the whole-cell catalysts. In contrast, by using the signal peptide of the P. putida outer membrane protein OprF, the activity was more than 12-fold enhanced to 638 mU ml−1 OD−1 compared with the signal peptide of V. cholerae CtxB (52 mU ml−1 OD−1). This positive effect was confirmed with a β-glucosidase as a second example enzyme. Here, cells expressing the protein with N-terminal OprF signal peptide showed more than fourfold higher β-glucosidase activity (181 mU ml−1 OD−1) than with the CtxB signal peptide (42 mU ml−1 OD−1). SDS-PAGE and flow cytometry analyses indicated that the increased activities correlated with an increased amount of recombinant protein in the outer membrane and a higher number of enzymes detectable on the cell surface. 相似文献
19.
20.
Oxidation of d-alpha-hydroxyglutarate to alpha-ketoglutarate is catalyzed by d-alpha-hydroxyglutarate oxidoreductase, an inducible membrane-bound enzyme of the electron transport particle [ETP; a comminuted cytoplasmic membrane preparation with enzymic properties and chemical composition resembling beef heart mitochondrial ETP (1)] of Pseudomonas putida P2 (P2-ETP). Treatment of P2-ETP with a nonionic detergent yields a preparation with the sedimentation characteristics of a soluble enzyme, but which retains an intact electron transport chain. Oxygen acts solely as a terminal electron acceptor and may be replaced by ferricyanide, 2,6-dichlorophenol indophenol, or mammalian cytochrome c. The oxidoreductase is specific for the d-isomer (K(m) = 4.0 x 10(-4)m for dl-alpha-hydroxyglutarate) and is distinct both from l- and d-malate dehydrogenases. Spectral studies suggest that the carrier sequence is substrate --> flavine or nonheme iron --> cyt b --> [cyt c] --> oxygen. 相似文献