首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of antimicrobial zeolite coated concrete specimens (Z2) against Acidithiobacillus thiooxidans was studied by measuring biomass dry cell weight (DCW), biological sulphate generation, and oxygen uptake rates (OURs). Uncoated (UC), and blank zeolite coated without antimicrobial agent (ZC) concrete specimens were used as controls. The study was undertaken by exposing inoculated basal nutrient medium (BNM) to the various specimens. The coating material was prepared by mixing zeolite, epoxy and cure with ratios, by weight of 2:2:1. Concrete specimens were characterized before and after exposure to inoculated or sterile BNM by field emission-scanning electron microscopy (FE-SEM). Gypsum, which was absent in the other test concrete specimens, was detected in uncoated specimens exposed to the bacterium. In UC and ZC, the growth of the bacteria increased throughout the duration of the experiment. However, significant biomass inhibition was observed in experiments where Z2 was used. The overall biomass growth rate in suspension before the specimens were placed ranged from 3.18 to 3.5 mg DCW day−1. After the bacterium was exposed to UC and ZC, growth continued with a corresponding value of 4 ± 0.4 and 5.5 ± 0.6 mg DCW day−1, respectively. No biomass growth was observed upon exposure of the bacterium to Z2. Similarly, while biological sulphur oxidation rates in UC and ZC were 88 ± 13 and 238 ± 25 mg SO4 2− day−1, respectively, no sulphate production was observed in experiments where Z2 concrete specimens were used. Peak OURs for UC and ZC ranged from 2.6 to 5.2 mg l−1 h−1, and there was no oxygen uptake in those experiments where Z2 was used. The present study revealed that the antimicrobial zeolite inhibits the growth of both planktonic as well as biofilm populations of Acidithiobacillus thiooxidans.  相似文献   

2.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

3.
Energy crises, global warming, and climatic changes call for technological and commercial advances in manufacturing high-quality transportation fuels from unconventional feedstocks. Microalgae is one of the most promising sources of biofuels due to the high yields attained per unit area and because it does not displace food crops. Neochloris oleabundans (Neo) microalga is an important promising microbial source of single-cell oil (SCO). Different experimental growth and lipid production conditions were evaluated and compared by using optical density (540 nm), dry-weight determination, and flow cytometry (FC). Best Neo average biomass productivity was obtained at 30°C under conditions of nitrogen-sufficiency and CO2 supplementation (N+/30°C/CO2), with an average doubling time of 1.4 days. The second and third highest productivities occurred with N-sufficient cultures without CO2 supplementation at 26°C (N+/26°C) and at 30°C (N+/30°C), with doubling times of 1.7 and 2.2 days, respectively. Microbial lipid production was monitored by flow cytometry using Nile red (NR), a lipophilic fluorochrome that possesses several advantageous characteristics for in situ screening near real time (at line). Results showed maximum lipid content (56%) after 6 days of nitrogen depletion under nitrogen starvation without CO2 supplementation (N−/30°C), followed by N−/30°C/CO2 and N−/26°C conditions with 52% lipid content, after 5 and 6 days of N starvation, respectively. The adequate fatty acid profile and iodine value of Neo lipids reinforced this microalga as a good source of SCO, in particular for use as biodiesel.  相似文献   

4.
The present study reviews the options of cultivating the green alga, Chlorella emersonii, under photoautotrophic conditions with flue gas derived from a cement plant. It was conducted in the Lafarge Perlmooser plant in Retznei, Austria, where stone coal and various surrogate fuels such as used tyres, plastics and meat-and-bone meal are incinerated for heating limestone. During 30 days of cultivation, flue gas had no visible adverse effects compared to the controls grown with pure CO2. The semi-continuous cultivation with media recycling was performed in 5.5-L pH-stat photobioreactors. The essay using CO2 from flue gas yielded a total of 2.00 g L−1 microalgal dry mass and a CO2 fixation of 3.25 g L−1. In the control, a total of 2.06 g L−1 dry mass was produced and 3.38 g L−1 CO2 was fixed. Mean growth rates were between 0.10 day−1 (control) and 0.13 day−1 (flue gas). No accumulation of flue gas residues was detected in the culture medium. At the end of the experiment, however, the concentration of lead was three times higher in algal biomass compared to the control, indicating that cultures aerated with this type of flue gas should not be used as food supplements or animal feed.  相似文献   

5.
Elevated tropospheric CO2 concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance “fringe” exploration type) or Tomentellopsis submollis (medium distance “smooth” exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO2 concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO2. The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO2. This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO2 at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm−1 and 6.0 μg cm−1, respectively, across all treatments.  相似文献   

6.
A flue gas originating from a municipal waste incinerator was used as a source of CO2 for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO2 simultaneously. The utilization of the flue gas containing 10–13% (v/v) CO2 and 8–10% (v/v) O2 for the photobioreactor agitation and CO2 supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO2 and air (11% (v/v) CO2). Correspondingly, the CO2 fixation rate was also higher when using the flue gas (4.4 g CO2 l−1 24 h−1) than using the control gas (3.0 g CO2 l−1 24 h−1). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements.  相似文献   

7.
In order to better elucidate fixed-C partitioning, nutrient acquisition and water relations of prairie grasses under elevated [CO2], we grew the C4 grass Bouteloua gracilis (H.B.K.) lag ex Steud. from seed in soil-packed, column-lysimeters in two growth chambers maintained at current ambient [CO2] (350 μL L−1) and twice enriched [CO2] (700 μL L−1). Once established, plants were deficit irrigated; growth chamber conditions were maintained at day/night temperatures of 25/16°C, relative humidities of 35%/90% and a 14-hour photoperiod to simulate summer conditions on the shortgrass steppe in eastern Colorado. After 11 weeks of growth, plants grown under CO2 enrichment had produced 35% and 65% greater total and root biomass, respectively, and had twice the level of vesicular-arbuscular mycorrhizal (VAM) infection (19.8% versus 10.8%) as plants grown under current ambient [CO2]. The CO2-enriched plants also exhibited greater leaf water potentials and higher plant water use efficiencies. Plant N uptake was reduced by CO2 enrichment, while P uptake appeared little influenced by CO2 regime. Under the conditions of the experiment, CO2 enrichment increased root biomass and VAM infection via stimulated growth and adjustments in C partitioning below-ground. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

8.
Flue gas generated by combustion of natural gas in a boiler was used for outdoor cultivation of Chlorella sp. in a 55 m2 culture area photobioreactor. A 6 mm thick layer of algal suspension continuously running down the inclined lanes of the bioreactor at 50 cm s−1 was exposed to sunlight. Flue gas containing 6–8% by volume of CO2 substituted for more costly pure CO2 as a source of carbon for autotrophic growth of algae. The degree of CO2 mitigation (flue gas decarbonization) in the algal suspension was 10–50% and decreased with increasing flue gas injection rate into the culture. A dissolved CO2 partial pressure (pCO2) higher than 0.1 kPa was maintained in the suspension at the end of the 50 m long culture area in order to prevent limitation of algal growth by CO2. NOX and CO gases (up to 45 mg m−3 NOX and 3 mg m−3 CO in flue gas) had no negative influence on the growth of the alga. On summer days the following daily net productivities of algae [g (dry weight) m−2] were attained in comparative parallel cultures: flue gas = 19.4–22.8; pure CO2 = 19.1–22.6. Net utilization (η) of the photosynthetically active radiant (PAR) energy was: flue gas = 5.58–6.94%; pure CO2 = 5.49–6.88%. The mass balance of CO2 obtained for the flue gas stream and for the algal suspension was included in a mathematical model, which permitted the calculation of optimum flue gas injection rate into the photobioreactor, dependent on the time course of irradiance and culture temperature. It was estimated that about 50% of flue gas decarbonization can be attained in the photobioreactor and 4.4 kg of CO2 is needed for production of 1 kg (dry weight) algal biomass. A scheme of a combined process of farm unit size is proposed; this includes anaerobic digestion of organic agricultural wastes, production and combustion of biogas, and utilization of flue gas for production of microalgal biomass, which could be used in animal feeds. A preliminary quantitative assessment of the microalgae production is presented.  相似文献   

9.
Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO4 3− 1.80 μmol L−1 and NO3 27.64 μmol L−1) was found between 70 and 200 m depth. Chlorophyll-a (Chl-a) values (max 14.24 μg L−1) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m−3 day−1. Pc was significantly correlated with total diatom abundance and Chl-a. Calculated ΔpCO2 (difference of the CO2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO2 flux from the atmosphere to the sea and suggests the area has been a CO2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO2 pumping.  相似文献   

10.
Aquatic carnivorous plants usually grow in shallow dystrophic waters poor in inorganic N and P. Utricularia australis was chosen as a model plant for its prolific distribution and great ecological plasticity. The photosynthetic CO2 compensation point and factors associated with investment in carnivory and capture of prey were measured in 17 U. australis micropopulations in Třeboň basin, Czech Republic, together with water chemistry factors at these sites differing greatly in their trophic level, water hardness, and prey availability. Apical shoot growth rate was estimated at some oligotrophic sites. The micropopulations differed greatly in the proportion of traps with animal prey (2.7–70%, mean 26%), trap proportion to total biomass (1.4–42%, mean 26%), mean trap biomass (0.7–63 μg trap−1, mean 19 μg), and maximum trap size (1–3 mm, mean 2.0 mm). CO2 compensation points ranged from 0.7 to 6.1 μM (mean 2.6 μM). A weak HCO3 use (compensation point 0.51 mM) was found in plants growing in alkaline water. Trap biomass proportion did not correlate significantly with prey capture and CO2 compensation points with ambient [CO2]. A very rapid apical growth (2.5–4.2 new nodes day−1) occurred in sand pits. Thus, HCO3 use in U. australis can be induced by growing at very high pH. CO2 compensation points resembled those known in other aquatic non-carnivorous plants. They did not reflect carnivory. In spite of very rapid apical shoot growth, the relative growth rate of U. australis can be zero in oligotrophic habitats without prey.  相似文献   

11.
Mass culture of microalgae is a potential alternative to cultivation of terrestrial crops for bioenergy production. However, microalgae require nitrogen fertiliser in quantities much higher than plants, and this has important consequences for the energy balance of these systems. The effect of nitrogen fertiliser supplied to microalgal bubble-column photobioreactor cultures was investigated using different nitrogen sources (nitrate, urea, ammonium) and culture conditions (air, 12% CO2). In 20 L cultivations, maximum biomass productivity for Chlorella vulgaris cultivated using nitrate and urea was 0.046 and 0.053 g L−1 day−1, respectively. Maximum biomass productivity for Dunaliella tertiolecta cultivated using nitrate, urea and ammonium was 0.033, 0.038 and 0.038 g L−1 day−1, respectively. In intensive bubble-column photobioreactors using 12% CO2, maximum productivity reached 0.60 and 0.83 g L−1 day−1 for C. vulgaris and D. tertiolecta, respectively. Recycling of nitrogen within the photobioreactor system via algal exudation of nitrogenous compounds and bacterial activity was identified as a potentially important process. The energetic penalty incurred by supply of artificial nitrogen fertilisers, phosphorus, power and CO2 to microalgal photobioreactors was investigated, although analysis of all energy burdens from biomass production to usable energy carriers was not conducted. After subtraction of the power, nitrogen and phosphorus energy burdens, maximum net energy ratios for C. vulgaris and D. tertiolecta cultivated in bubble columns were 1.82 and 2.10. Assuming CO2 was also required from a manufactured source, the net energy ratio decreased to 0.09 and 0.11 for C. vulgaris and D. tertiolecta, so that biomass production in this scenario was unsustainable. Although supply of nitrogen is unlikely to be the most energetically costly factor in sparged photobioreactor designs, it is still a very significant penalty. There is a need to optimise both cultivation strategies and recycling of nitrogen in order to improve performance. Data are supported by measurements including biochemical properties (lipid, protein, heating value) and bacterial number by epifluorescence microscopy.  相似文献   

12.
Nuisance growth of Myriophyllum aquaticum has often been attributed to high amounts of nutrients. The uptake of nitrogen and phosphorus from sediments and their allocation have been documented in both natural and laboratory populations. However, nutrient loading to surface water is increasingly becoming an important issue for water quality standards. Aquatic macrophytes that develop adventitious roots may be able to survive through the uptake of water column nutrients. Our objectives for this study were to assess M. aquaticum growth when combinations of nitrogen and phosphorus were added to the water column. Mesocosm experiments were conducted where nitrogen (1.8, 0.8, and 0.4 mg l−1; high, medium, and low) and phosphorus (0.09, 0.03, 0.01 mg l−1; high, medium, and low) concentrations were paired and added to the water column. After 12 weeks, the combination of 1.80:0.01 N:P resulted in greater (P < 0.01) total biomass and greater biomass for all plant tissues. Total biomass at the 1.80:0.01 N:P combination was 53% greater than biomass at all other combinations. The yield response of M. aquaticum was a quadratic function of tissue nutrient content. Yield was positively (r 2 = 0.82) related to increasing nitrogen content, whereas a negative (r 2 = 0.89) relationship was determined for increasing phosphorus content. We propose the negative relationship is due to increased nutrient competition and shading by algae resulting in reduced M. aquaticum growth. Tissue nutrient content indicated that critical concentrations (1.8% nitrogen and 0.2% phosphorus) for growth were not attained except for nitrogen in plants grown in the 1.80:0.01 N:P combination. These data provide further evidence that M. aquaticum requires high levels of nitrogen to achieve nuisance growth. Survival through uptake of water column nutrients may be a mechanism for survival during adverse conditions, a means of long distance dispersal of fragments, or may offer a competitive advantage over species that rely on sediment nutrients.  相似文献   

13.
CO2 efflux from soil and snow surfaces was measured continuously in a Japanese cedar (Cryptomeria japonica D. Don) forest in central Japan using an open dynamic chamber system. The chamber opens and closes automatically and records measurements based on an open-flow dynamic method. Between May and December, mean soil CO2 efflux ranged from 1,529 mg CO2 m−2 h−1 in September to 255 mg CO2 m−2 h−1 in December. The seasonal change in CO2 efflux from the soil paralleled the seasonal pattern of soil temperature. No marked diurnal trends in soil CO2 efflux were observed on days without rainfall, whereas significant pulses in soil CO2 efflux were observed on days with rainfall. In this plantation, soil CO2 efflux frequently responded to rainfall. Measurements of changes from litter-covered soil to snow-covered surfaces revealed that CO2 efflux decreased from values of ca. 250 mg CO2 m−2 h−1 above soil to less than 33 mg CO2 m−2 h−1 above snow. Soil temperature alone explained 66% of the overall variation in soil CO2 efflux, but explained approximately 85% of the variation when data from two anomalous periods were excluded. Moreover, we found a significant correlation between soil CO2 efflux and soil moisture (which explained 44% of the overall variation) using a second-order polynomial function. Our results suggest that the seasonality of CO2 efflux is affected not only by soil temperature and moisture, but also by drying and rewetting cycles and by litterfall pulses.  相似文献   

14.
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO2) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg2+, NH4 + and PO4 3− decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na+, Ca2+, and K+ or increasing Ca2+, Mg2+, K+, NH4 + and PO4 3− concentrations had no effect on ethanol production. However, increased Na+ concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l−1) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH4 + and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH4 + and CyS to CSL (20 g l−1, wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l−1, the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l−1) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH4 +). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.  相似文献   

15.
To understand the potential of cultivating Botryococcus braunii with flue gas (normally containing high CO2) for biofuel production, growth characteristics of B. braunii 765 with 2-20% CO2 aeration were investigated. The results showed that the strain could grow well without any obvious inhibition under all tested CO2 concentrations with an aeration rate of 0.2 vvm, even without any culture pH adjustment (ranged from 6.0 to 8.0). The maximum biomass among all conditions was 2.31 g L−1 on 25th day at 20% CO2. Hydrocarbon content and algal colony size increased with the increase of CO2 concentration. A negative correlation between algal biomass and culture total phosphorus was observed (from −0.828 to −0.911, < 0.01). Additionally, 2% sodium hypochlorite solution was used for photobioreactor sterilization to cultivate B. braunii.  相似文献   

16.
In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 μg SRP l−1 and 1024 μg NO3-N l−1. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 μg SRP l−1 and 86 μg DIN l−1. These saturating concentrations for growth rates were 3–5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.  相似文献   

17.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

18.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

19.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

20.
Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号