首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Confronted with inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce industrial chemicals is receiving significant interest. Biotechnological production of four-carbon 1,4-dicarboxylic acids (C4 diacids) from renewable plant biomass is a promising and attractive alternative to conventional chemistry routes. Although the C4 diacids pathway is well characterized and microorganisms able to convert biomass to these acids have been isolated and described, much still has to be done to make this process economically feasible. Metabolically engineered Escherichia coli has been developed as a biocatalyst to provide new processes for the biosynthesis of many valuable chemicals. However, E. coli does not naturally produce C4 diacids in large quantities. Rational strain development by metabolic engineering based on efficient genetic tools and detailed knowledge of metabolic pathways are crucial to successful production of these compounds. This review summarizes recent efforts and experiences devoted to metabolic engineering of the industrial model bacteria E. coli that led to efficient recombinant biocatalysts for the production of C4 diacids, including succinate, fumarate, malate, oxaloacetate, and aspartate, as well as the key limitations and challenges. Continued advancements in metabolic engineering will help to improve the titers, yields, and productivities of the C4 diacids discussed here.  相似文献   

3.
In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.  相似文献   

4.

Recent progress in synthetic and systems metabolic engineering technologies has explored the potential of microbial cell factories for the production of industrially relevant bulk and fine chemicals from renewable biomass resources in an eco-friendly manner. Corynebacterium glutamicum, a workhorse for industrial amino acid production, has currently evolved into a promising microbial platform for bioproduction of various natural and non-natural chemicals from renewable feedstocks. Notably, it has been recently demonstrated that metabolically engineered C. glutamicum can overproduce several commercially valuable aromatic and related chemicals such as shikimate, 4-hydroxybenzoate, and 4-aminobenzoate from sugars at remarkably high titer suitable to commercial application. On the other hand, overexpression and/or extension of its endogenous metabolic pathways by integrating heterologous metabolic pathways enabled production of structurally intricate and valuable natural chemicals like plant polyphenols, carotenoids, and fatty acids. In this review, we summarize recent advances in metabolic engineering of C. glutamicum for production of those value-added aromatics and other natural products, which highlights high potential and the versatility of this microbe for bioproduction of diverse chemicals.

  相似文献   

5.
Organic acids are valuable platform chemicals for future biorefining applications. Such applications involve the conversion of low-cost renewable resources to platform sugars, which are then converted to platform chemicals by fermentation and further derivatized to large-volume chemicals through conventional catalytic routes. Organic acids are toxic to many of the microorganisms, such as Escherichia coli, proposed to serve as biorefining platform hosts at concentrations well below what is required for economical production. The toxicity is two-fold including not only pH based growth inhibition but also anion-specific effects on metabolism that also affect growth. E. coli maintain viability at very low pH through several different tolerance mechanisms including but not limited to the use of decarboxylation reactions that consume protons, ion transporters that remove protons, increased expression of known stress genes, and changing membrane composition. The focus of this mini-review is on organic acid toxicity and associated tolerance mechanisms as well as several examples of successful organic acid production processes for E. coli.  相似文献   

6.
Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.  相似文献   

7.
Rhizopus oryzae is a filamentous fungus belonging to the Zygomycetes. It is among others known for its ability to produce the sustainable platform chemicals l-(+)-lactic acid, fumaric acid, and ethanol. During glycolysis, all fermentable carbon sources are metabolized to pyruvate and subsequently distributed over the pathways leading to the formation of these products. These platform chemicals are produced in high yields on a wide range of carbon sources. The yields are in excess of 85 % of the theoretical yield for l-(+)-lactic acid and ethanol and over 65 % for fumaric acid. The study and optimization of the metabolic pathways involved in the production of these compounds requires well-developed metabolic engineering tools and knowledge of the genetic makeup of this organism. This review focuses on the current metabolic engineering techniques available for R. oryzae and their application on the metabolic pathways of the main fermentation products.  相似文献   

8.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

9.
Systems metabolic engineering and in silico analyses are necessary to study gene knockout candidate for enhanced succinic acid production by Escherichia coli. Metabolically engineered E. coli has been reported to produce succinate from glucose and glycerol. However, investigation on in silico deletion of ptsG/b1101 gene in E. coli from glycerol using minimization of metabolic adjustment algorithm with the OptFlux software platform has not yet been elucidated. Herein we report what is to our knowledge the first direct predicted increase in succinate production following in silico deletion of the ptsG gene in E. coli GEM from glycerol with the OptFlux software platform. The result indicates that the deletion of this gene in E. coli GEM predicts increased succinate production that is 20% higher than the wild-type control model. Hence, the mutant model maintained a growth rate that is 77% of the wild-type parent model. It was established that knocking out of the ptsG/b1101 gene in E. coli using glucose as substrate enhanced succinate production, but the exact mechanism of this effect is still obscure. This study informs other studies that the deletion of ptsG/b1101 gene in E. coli GEM predicted increased succinate production, enabling a model-driven experimental inquiry and/or novel biological discovery on the underground metabolic role of this gene in E. coli central metabolism in relation to increasing succinate production when glycerol is the substrate.  相似文献   

10.
Recombinant strains of Escherichia coli K-12 for the production of the three aromatic amino acids (l-phenylalanine, l-tryptophan, l-tyrosine) have been constructed. The largest demand is for l-phenylalanine (l-Phe), as it can be used as a building block for the low-calorie sweetener, aspartame. Besides l-Phe, an increasing number of shikimic acid pathway intermediates can be produced from appropriate E. coli mutants with blocks in this pathway. The last common intermediate, chorismate, in E. coli not only serves for production of aromatic amino acids but can also be used for high-titer production of non-aromatic compounds, e.g., cyclohexadiene-transdiols. In an approach to diversity-oriented metabolic engineering (metabolic grafting), platform strains with increased flux through the general aromatic pathway were created by suitable gene deletions, additions, or rearrangements. Examples for rational strain constructions for l-phenylalanine and chorismate derivatives are given with emphasis on genetic engineering. As a result, l-phenylalanine producers are available, which were derived through several defined steps from E. coli K-12 wild type. These mutant strains showed l-phenylalanine titers of up to 38 g/l of l-phenylalanine (and up to 45.5 g/l using in situ product recovery). Likewise, two cyclohexadiene-transdiols could be recovered.  相似文献   

11.
Escherichia coli is currently used by many research institutions and companies around the world as a platform organism for the development of bio-based production processes for bulk biochemicals. A given bulk biochemical bioprocess must be economically competitive with current production routes. Ideally the viability of each bioprocess should be evaluated prior to commencing research, both by metabolic network analysis (to determine the maximum theoretical yield of a given biocatalyst) and by techno-economic analysis (TEA; to determine the conditions required to make the bioprocess cost-competitive). However, these steps are rarely performed. Here we examine theoretical yields and review available TEA for bulk biochemical production in E. coli. In addition, we examine fermentation feedstocks and review recent strain engineering approaches to achieve industrially-relevant production, using examples for which TEA has been performed: ethanol, poly-3-hydroxybutyrate, and 1,3-propanediol.  相似文献   

12.
Genome-scale metabolic model (GEM) of Escherichia coli has been published with applications in predicting metabolic engineering capabilities on different carbon sources and directing biological discovery. The use of glycerol as an alternative carbon source is economically viable in biorefinery. The use of GEM for predicting metabolic gene deletion of lactate dehydrogenase (ldhA) for increasing succinate production in Escherichia coli from glycerol carbon source remained largely unexplored. Here, I hypothesized that metabolic gene knockout of ldhA in E. coli from glycerol could increase succinate production. A proof-of-principle strain was constructed and designated as E. coli BMS5 (ΔldhA), by predicting increased succinate production in E. coli GEM and confirmed the predicted outcomes using wet cell experiments. The mutant GEM (ΔldhA) predicted 11% increase in succinate production from glycerol compared to its wild-type model (iAF1260), and the E. coli BMS5 (ΔldhA) showed 1.05 g/l and its corresponding wild-type produced .05 g/l (23-fold increase). The proof-of-principle strain constructed in this study confirmed the aforementioned hypothesis and further elucidated the fact that E. coli GEM can prospectively and effectively predict metabolic engineering interventions using glycerol as substrate and could serve as platform for new strain design strategies and biological discovery.  相似文献   

13.
The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.  相似文献   

14.
Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H+ conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l?1 (41.2-fold in 7 days) from glycerol and .39 g l?1 (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.  相似文献   

15.
Biotechnological production of fuels and chemicals from renewable resources is an appealing way to move from the current petroleum-based economy to a biomass-based green economy. Recently, the feedstocks that can be used for bioconversion or fermentation have been expanded to plant biomass, microbial biomass, and industrial waste. Several microbes have been engineered to produce chemicals from renewable resources, among which Escherichia coli is one of the best studied. Much effort has been made to engineer E. coli to produce fuels and chemicals from different renewable resources. In this paper, we focused on E. coli and systematically reviewed a range of fuels and chemicals that can be produced from renewable resources by engineered E. coli. Moreover, we proposed how can we further improve the efficiency for utilizing renewable resources by engineered E. coli, and how can we engineer E. coli for utilizing alternative renewable feedstocks. e.g. C1 gases and methanol. This review will help the readers better understand the current progress in this field and provide insights for further metabolic engineering efforts in E. coli.  相似文献   

16.
Isoprene is an aviation fuel of high quality and an important polymer building block in the synthetic chemistry industry. In light of high oil prices, sustained availability, and environmental concerns, isoprene from renewable materials is contemplated as a substitute for petroleum-based product. Escherichia coli with advantages over other wild microorganisms, is considered as a powerful host for biofuels and chemicals. Here, we constructed a synthetic pathway of isoprene in E. coli by introducing an isoprene synthase (ispS) gene from Populus nigra, which catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to isoprene. To improve the isoprene production, we overexpressed the native 1-deoxy-d-xylulose-5-phosphate (DXP) synthase gene (dxs) and DXP reductoisomerase gene (dxr) in E. coli, which catalyzed the first step and the second step of MEP pathway, respectively. The fed-batch fermentation results showed that overexpression of DXS is helpful for the improvement of isoprene production. Surprisingly, heterologous expression of dxs and dxr from Bacillus subtilis in the E. coli expressing ispS resulted in a 2.3-fold enhancement of isoprene production (from 94 to 314 mg/L). The promising results showed that dxs and dxr from B. subtilis functioned more efficiently on the enhancement of isoprene production than native ones. This could be caused by the consequence of great difference in protein structures of the two original DXSs. It could be practical to produce isoprene in E. coli via MEP pathway through metabolic engineering. This work provides an alternative way for production of isoprene by engineered E. coli via MEP pathway through metabolic engineering.  相似文献   

17.
Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future.  相似文献   

18.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

19.
Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H+ conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l?1 of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.  相似文献   

20.
With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which had previously been identified by using genome-scale stoichiometric metabolic model simulations. The acl gene was deleted using the bipartite gene-targeting method, and the mutant was characterized in batch cultivation. It was found that the succinic acid yield was increased threefold by deleting the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号