首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the development of a novel ELISA platform to quantitate hepatitis B virus X (HBx) protein refolding yields, which is critical for rational design and scaleup of aHBx bioprocess. HBx refolding yields were measured by determining the amount of HBx bound to immobilized GST–p53 on a “reduced glutathione”-functionalized maleimide surface. Refolding yields were distinguished from soluble yields, which were determined by measuring total HBx protein bound to a maleimide surface under reducing conditions. This platform is amenable to scaleup, and will expedite HBx production for structural and clinical studies, leading to the development of HBx-based therapy for liver cancer.  相似文献   

2.
The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.  相似文献   

3.
Various functions are ascribed to the HBx regulatory protein of the hepatitis B virus (HBV). Due to the low expression level of HBx, it has been difficult to correlate spatial and temporal HBx expression levels with specific functions. Based on a novel cell-permeable peptide, known as the translocation motif (TLM), cell-permeable HBx fusion proteins were generated. The TLM–HBx fusion protein is rapidly internalized from the medium into almost all cells, whereas no significant internalization was seen with wild-type HBx. The major fraction of internalized HBx protein moves from the cytoplasm to the nucleus. The cytosolic fraction, however, activates c-RAF1/extracellular-signal-related kinase 2 signalling and causes activation of activator protein 1 (AP1) and nuclear factor-κB. The TLM–HBx protein rescues HBV gene expression from an activator-deficient HBV genome. These results indicate that cell-permeable regulatory proteins provide a novel, efficient tool for a clearly defined, dose-dependent analysis of regulatory protein function, without affecting the integrity of the cell, and can be used for the safe reconstitution of virus production from a regulatory-protein-deficient virus genome.  相似文献   

4.
5.
The oncogenic hepatitis B virus X protein (HBx) and cyclooxygenase (COX)-2 are highly co-expressed in chronic hepatitis, cirrhosis and well-differentiated hepatocellular carcinoma (HCC). Although HBx is shown to activate COX-2, the functional consequences of this interaction in hepatocarcinogenesis remain unknown. Using an engineered hepatoma cell system in which the expression of wild-type p53 can be chemically modulated, we show here that COX-2 mediates HBx actions in opposing p53. Enforced expression of HBx sequestrates p53 in the cytoplasm and significantly abolishes p53-induced apoptosis. The anti-apoptotic Mcl-1 protein is suppressed by p53 but reactivated by HBx. The abrogation of apoptosis is completely reversed by specific COX-2 inhibition, suggesting that HBx blocks p53-induced apoptosis via activation of COX-2/PGE2 pathway. We further show that COX-2 inhibition blocks HBx reactivation of Mcl-1, linking this protein to the anti-apoptotic function of COX-2. These results demonstrate that COX-2 is an important survival factor mediating the oncogenic actions of HBx. Over-expression of HBx and COX-2 may provide a selective clonal advantage for preneoplastic or neoplastic hepatocytes and contribute to the initiation and progression of HCC.  相似文献   

6.
Although the hepatitis B virus X protein (HBx) is thought to play a causative role in the development of hepatocellular carcinoma, it is not yet known whether interfering with HBx function may affect the cellular transformation of HBx-expressing tumor cells. To address this question, we adopted an intracellular antibody fragment expression approach to block the function of HBx. Expression of a single-chain variable fragment (scFv) specific to HBx (designated as H7scFv) inhibited HBx-dependent cellular transactivation. Furthermore, H7scFv suppressed the growth of HBx-expressing tumor cells in both soft agar and nude mice. The suppressive effect of H7scFv on tumorigenicity appeared not to be mediated by inhibition of HBx-induced growth stimulation since the growth rate of these cells was not affected significantly by H7scFv expression. In conclusion, these data suggest that the HBx-dependent transformed phenotype is reversible and that HBx may be a good molecular target for the treatment of HBV-related tumors.This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health& Welfare, Republic of Korea (03-PJ1-PG3-20200–0023)  相似文献   

7.
8.
Understanding the function of the hepatitis B virus X protein (HBx) is fundamental to elucidating the underlying mechanisms of hepatitis and hepatocarcinogenesis caused by hepatitis B virus (HBV) infection. We identified heat shock protein 60 (Hsp60) as a novel cellular target of HBx by the combination of affinity purification and mass spectrometry. Physical interaction between HBx and Hsp60 was confirmed by standard immunoprecipitation and immunoblot methods. Analysis of HBx deletion constructs showed that amino acids 88-117 of HBx were responsible for the binding to Hsp60. Confocal laser microscopy demonstrated that HBx and Hsp60 colocalized in mitochondria. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP end labeling (TUNEL) revealed that the introduction of Hsp60 into cells facilitated HBx-induced apoptosis. These findings suggest the importance of the molecular chaperon protein Hsp60 to the function of HBV viral proteins.  相似文献   

9.
Hepatitis B virus (HBV) encodes the regulatory HBx protein, which is required for virus replication, although its specific role(s) in the replication cycle remains under investigation. An immunoprecipitation/mass spectrometry approach was used to identify four novel HBx binding proteins from the cytoplasmic fraction of HBx transgenic mouse livers. One of these HBx binding partners is beta interferon promoter stimulator 1 (IPS-1), an adaptor protein that plays a critical role in mediating retinoic acid-inducible gene I (RIG-I) signaling, which leads to the activation of beta interferon (IFN-β). The HBx-IPS-1 protein interaction was confirmed in plasmid-transfected HepG2 cells by reciprocal coimmunoprecipitation and Western blotting. We hypothesized that HBx might alter IPS-1 function since proteins of hepatitis C virus and hepatitis A virus similarly bind IPS-1 and target it for inactivation. The effect of HBx on IPS-1-mediated IFN-β signaling was tested in transfected 293T and HepG2 cells, and we show that HBx inhibits double-stranded DNA (dsDNA)-mediated IFN-β activation in a dose-dependent manner when expressed either alone or within the context of HBV replication. However, HBx does not inhibit poly(I:C)-activated IFN-β signaling. These results demonstrate that HBx interferes with the RIG-I pathway of innate immunity. Hepatitis B virus now joins hepatitis C virus and hepatitis A virus in targeting the same innate immune response pathway, presumably as a shared strategy to benefit replication of these viruses in the liver.  相似文献   

10.
11.
12.
13.
Chronic hepatitis B virus infection is the dominant global cause of hepatocellular carcinoma (HCC), especially hepatitis B virus-X (HBx) plays a major role in this process. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumor suppressor gene and other tumor suppressor genes and senescence-related factors. However, the relationship between HBx and autophagy during the HCC development is poorly known. Previous studies found that autophagy functions as a survival mechanism in liver cancer cells. We suggest that autophagy plays a possible role in the pathogenesis of HBx-induced HCC. The present study showed that HBx transfection brought about an increase in the formation of autophagosomes and autolysosomes. Microtubule-associated protein light chain 3, Beclin 1, and lysosome-associated membrane protein 2a were up-regulated after HBx transfection. HBx-induced increase in the autophagic level was increased by mTOR inhibitor rapamycin and was blocked by treatment with the PI3K?CAkt inhibitor LY294002. The same results can also be found in HepG2.2.15 cells. These results suggest that HBx activates the autophagic lysosome pathway in HepG-2 cells through the PI3K?CAkt?CmTOR pathway.  相似文献   

14.
Chronic hepatitis B (CHB) is associated with the development of hepatocellular carcinoma (HCC). Decoy receptor 3 (DcR3) is a tumor necrosis factor receptor that promotes tumor cell survival by inhibiting apoptosis and interfering with immune surveillance. Previous studies showed that DcR3 was overexpressed in HCC cells and that short hairpin RNA (shDcR3) sensitizes TRAIL-resistant HCC cells. However, the expression of DcR3 during hepatitis B virus (HBV) infection has not been investigated. Here, we demonstrated that DcR3 was overexpressed in CHB patients and that DcR3 upregulation was positively correlated with the HBV DNA load and liver injury (determined by histological activity index, serum alanine aminotransferase level, and aspartate aminotransferase level). We found that hepatitis B virus X protein (HBx) upregulated DcR3 expression in a dose-dependent manner, but this increase was blocked by NF-κB inhibitors. HBx also induced the activation of NF-κB, and the NF-κB subunits p65 and p50 upregulated DcR3 by directly binding to the DcR3 promoters. Inhibition of PI3K significantly downregulated DcR3 and inhibited the binding of NF-κB to the DcR3 promoters. Our results demonstrate that the HBx induced DcR3 expression via the PI3K/NF-κB pathway; this process may contribute to the development of HBV-mediated HCC.  相似文献   

15.
16.
17.
18.
19.
Src kinases involved in hepatitis B virus replication.   总被引:25,自引:0,他引:25       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号