首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of HIV-1- or HIV-2-induced cytopathicity and (Moloney) murine sarcoma virus (MSV)-induced cell transformation by amino acid and amino alcohol adducts of either 3'-azido-2',3'-dideoxythymidine 5'-monophosphate (AZTMP) or 5'-hydrogenphosphonate (AZTHP) were investigated. Both types of nucleotide adducts inhibited replication of HIV-1 and HIV-2 in MT-4 cells at a 1.5- to 3-fold higher EC50 (50% effective concentration) than AZT; and, also, selectivity indexes of these adducts were approximately 1.5 to 3-fold lower than that of AZT. The activity of the AZTMP and AZTHP adducts against MSV-induced transformation of C3H/3T3 cells was equal to or only slightly inferior than that of AZT, but their toxicity was 10-fold lower, so that their selectivity indexes were 2- to 7-fold higher. The nature of the aminoacyl component of the adducts significantly influence the antiretroviral activity of the test compounds.  相似文献   

2.
A sulphated derivative of paramylon, a water-insoluble (1–3)-β-D-glucan from Euglena gracilis , inhibited the cytopathic effect of human immunodeficiency virus (HIV-1) on cultured MT-4 cells as efficiently as dextran sulphate. A computer-assisted three-dimensional graphing technique revealed that paramylon sulphate and 3'-azido-2', 3'-dideoxythymidine (AZT) synergistically inhibited HIV replication.  相似文献   

3.
4.
5.
The two thymidine (dThd) kinases in human cells, the cytosolic, S-phase-specific TK1 and the mitochondrial, constitutively expressed TK2 were purified to homogeneity as judged from sodium dodecyl sulfate-gel electrophoresis. The substrate specificity of TK1 and TK2 toward natural substrates and important nucleoside analogues was compared. With TK1, the Km values for 5-fluorodeoxyuridine (FdUrd), 3'-azido-2',3'-dideoxythymidine (AZT), and 3'-fluoro-2',3'-dideoxythymidine (FLT) were 2.2, 0.6, and 2.1 microM as compared to 0.5 microM for dThd and 9 microM for deoxyuridine (dUrd). With TK2, dUrd, deoxycytidine (dCyd), and 5-fluorodeoxyuridine (FdUrd) were efficiently phosphorylated, but with distinctly different kinetics: Michaelis-Menten kinetics with dCyd, dUrd, and FdUrd; negative cooperativity with dThd. Negative cooperativity was also observed with AZT, although this drug was a very poor substrate for TK2 with a Vmax of 5-6% of that with dThd. FLT, 2',3'-dideoxycytidine (ddCyd), and arabinofuranosylcytosine (araC) were not substrates for TK2, and 2',3'-didehydrodideoxy-thymidine (D4T) was not a substrate for TK1 or TK2. On the other hand, AZT, FLT, and D4T were competitive inhibitors with Ki values of 0.6, 6, and 2073 microM for TK1, and 2, 10, and 78 microM for TK2, respectively. The much lower tolerance for modifications of the deoxyribose moiety of TK2 as compared to TK1 is important for the design of new antiviral nucleoside analogues intended for use in cells with different expression of TK1 and TK2.  相似文献   

6.
2',3'-Didehydro-2',3'-dideoxy-5-chlorocytidine (D4CC) is, in contrast with 2',3'-dideoxy-5-chlorocytidine (ddClCyd) and 2',3'-didehydro-2',3'-dideoxy-5-chlorouridine (D4CU), a potent and selective inhibitor of the replication of human immunodeficiency virus (HIV) types 1 and 2, simian immunodeficiency virus (SIV) and simian AIDS related virus (SRV). D4CC is a poor inhibitor of the phosphorylation of [5-3H]2'-deoxycytidine (dCyd) by partially purified MT-4 cell dCyd kinase (Ki: 612 microM). The findings that (i) D4CC has little, if any, affinity for MT-4 cell Cyd/dCyd deaminase, (ii) D4CU is not antivirally active and (iii) the antiretroviral action of D4CC can be reversed by dCyd, but not dThd, indicate that D4CC is antivirally active as its Cyd metabolite (D4CC 5'-triphosphate) and does not need to be deaminated (to the corresponding Urd metabolite) to exert its antiretroviral action.  相似文献   

7.
8.
5'-Phosphites (5'-hydrogenphosphonates) of 3'-azido-2'-, 3'-dideoxynucleosides are shown to be effective inhibitors of the human immunodeficiency virus (HIV-1) in MT4 cell culture. 5'-Phosphite of 3'-azido-2', 3'-dideoxythymidine was the most active among these compounds and even a little more active as compared to the well-known anti-AIDS drug 3'-azido-2',3'-dideoxythymidine; at the same time 5'-phosphites of 3'-azido-2',3' -dideoxynucleosides with adenine, guanine and cytosine bases were more active than the corresponding nucleosides. The toxicity of all four phosphites was comparatively low and the equimolar mixture of all four phosphites was 2-3 fold less toxic than each of them separately. Data on the decreased toxicity of the phosphite mixture are explained from the viewpoint of a decreased pool disbalance of natural 2'-deoxynucleoside 5'-triphosphates in cells; a significant pool disbalance is developed in the case of 3'-azido-2',3'-dideoxythymidine action.  相似文献   

9.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

10.
11.
12.
Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 microM), the 2-halo-2',3-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.  相似文献   

13.
The antiherpetic agent 9-beta-D-arabinofuranosyladenine (araA) needs to be phosphorylated to its 5'-triphosphate to be effective as an inhibitor of herpes simplex virus replication. Adenosine kinase and deoxycytidine kinase are assumed to convert araA to its 5'-monophosphate. We now found that araAMP is converted to its 5'-triphosphate through a direct pyrophosphate transfer from 5-phosphoribosyl-1-pyrophosphate (PRPP) by PRPP synthetase. The efficiency of phosphorylation of araAMP to araATP is about 5% of that of AMP, as estimated from their Vmax/Km ratios for PRPP synthetase. AraATP is converted to araAMP by PRPP synthetase at a 4-fold higher Km but similar Vmax as ATP.  相似文献   

14.
15.
16.
4'-Azidothymidine (ADRT) is a novel nucleoside analog, that selectively inhibits human immunodeficiency virus replication in human lymphocytes. Unlike the dideoxyribonucleoside analogs and 3'-azido-2',3'-dideoxythymidine (AZT), ADRT retains the 3'-hydroxy group. The pathways of ADRT metabolism were elucidated by determining: (i) the kinetics of the interactions of ADRT and its metabolites with enzymes of thymidine metabolic pathways, (ii) the pool sizes of phosphorylated metabolites, and (iii) the nature of ADRT incorporation into human DNA. ADRT is not a substrate for thymidine phosphorylase, but is metabolized by kinases. Thymidine kinase phosphorylates ADRT to ADRT monophosphate (ADRT-MP). For this enzyme, ADRT has a Ki value of 5.2 microM, in comparison to a Km value of 0.7 microM for thymidine. The Km value of ADRT toward thymidine kinase is 8.3 microM and the rate of ADRT phosphorylation is 1.4% that of thymidine phosphorylation. ADRT-MP has a low affinity toward thymidylate kinase (a Ki value of 28.9 microM versus a Km value of 0.56 microM for thymidylate), and toward thymidylate synthase (a Ki value of 180 microM versus a Km value of 8 microM for deoxyuridylate). The results suggest that ADRT can be activated effectively by cellular kinases without significant interference of normal thymidine metabolism. In cultured human lymphocytes (A3.01, H9, and U937 cells), ADRT was phosphorylated efficiently to ADRT 5'-triphosphate (ADRT-TP), which is the major metabolite of ADRT. The intracellular concentrations of ADRT-TP ranged from 1 to 3.3 microM after 24 h of incubation with 2 microM of ADRT and the half-life of ADRT-TP varied from 3 to 6 h. Although ADRT-TP is a poor competitive inhibitor against dTTP toward DNA polymerases alpha and beta with Ki values of 62.5 and 150 microM, respectively. ADRT-MP was found to be internally incorporated into cellular DNA. The extent of ADRT-MP substitution for dTMP in DNA was 1 in 6979 for A3.01 cells incubated with 2.9 microM ADRT for 24 h. Internal incorporation of ADRT-MP contrasts with the mechanism of other 2',3'-dideoxynucleoside analogs (i.e. AZT, ddC, ddI, d4T...), which are DNA chain terminators. This finding indicates that a 3'-deoxy structure in a nucleoside analog is not a prerequisite for anti-human immunodeficiency virus activity.  相似文献   

17.
2',3'-Dideoxythymidine (ddThd) and its 2',3'-unsaturated derivative 2',3'-dideoxythymidinene (ddeThd) are potent and selective inhibitors of human immunodeficiency virus (HIV) in vitro. When evaluated for their inhibitory effects on the cytopathogenicity of HIV in MT-4 cells, ddThd and ddeThd completely protected the cells against destruction by the virus at a concentration of 1 microM and 0.04 microM, respectively. In this aspect, ddeThd was about 5 times more potent than 2',3'-dideoxycytidine (ddCyd), one of the most potent and selective anti-HIV compounds now pursued for its therapeutic potential in the treatment of AIDS. ddThd and ddeThd also suppressed HIV antigen expression at 1 microM and 0.04 microM, respectively. Their selectivity indexes, as based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, were 120 (ddeThd) and greater than 625 (ddThd).  相似文献   

18.
19.
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP). With dCK and ATP1, products were shown to be 5'-phosphates. With dCK, donor properties of the analogues were dependent on the nature of the acceptor, as with natural 5'-triphosphate donors. With dCK (dCyd as acceptor), Km and Vmax for the two 2'(3')-deoxyadenosine-3'(2')-triphosphates are similar to those for ATP. With dGK, Km values are higher than for ATP, while Vmax values are comparable. Kinetic studies further demonstrated Michaelis-Menten (non-cooperative) or cooperative kinetics, dependent on the enzyme employed and the nature of the donor. The physiological significance, if any, of the foregoing remains to be elucidated. The overall results are, on the other hand, highly relevant to studies on the modes of interaction of nucleoside kinases with donors and acceptors; and, in particular, to interpretations of the recently reported crystal structures of dGK with bound ATP, of dNK with bound dCyd, and associated modeling studies.  相似文献   

20.
2',3'-Dideoxythymidine triphosphate differentially inhibited replicative DNA synthesis in permeable mouse ascites sarcoma cells and unscheduled DNA synthesis in bleomycin-treated permeable cells or in isolated rat liver nuclei. The mode of inhibition of 2',3'-dideoxythymidine triphosphate was competitive with respect to deoxythymidine triphosphate. 2',3'-Dideoxythymidine triphosphate inhibited replicative DNA synthesis with a Ki of 8 microM, whereas unscheduled DNA synthesis was more sensitive, the Ki being 0.5 microM. Referring to the differential sensitivity of DNA polymerases alpha and beta to 2',3'-dideoxythymidine triphosphate and to other related information reported previously, the present results suggested that DNA polymerase alpha is playing a major role in replicative DNA synthesis, and DNA polymerase beta in unscheduled DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号