首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

2.
Like honey bees (Apis mellifera), non-Apis bees could exploit honeydew as a carbohydrate source. In addition to providing carbohydrates, this may expose them to potentially harmful plant products secreted in honeydew. However, knowledge on honeydew feeding by solitary bees is very scarce. Here we determine whether the polylectic solitary bee Osmia bicornis (=O. rufa) collects honeydew under semi-field conditions, and whether this is affected by aphid species and presence of floral nectar. Bees were provided with oilseed rape plants containing flowers and/or colonies of either Myzus persicae or Brevicoryne brassicae. We used the total sugar level of the bee crop as a measure of the individual's nutritional state and the oligosaccharide erlose as indicator for honeydew consumption. Erlose was present in honeydews from both aphid species, while absent in oilseed rape nectar, nor being synthesized by O. bicornis. When bees were confined to a single honeydew type as the only carbohydrate source, consumption of M. persicae honeydew was confirmed for 47% of the bees and consumption of B. brassicae honeydew for only 3%. Increased mortality in the latter treatment provided further evidence that B. brassicae honeydew is an unsuitable food source for O. bicornis. All bees that were given the choice between honeydew and floral nectar showed significantly increased total sugar levels. However, the fact that no erlose was detected in these bees indicates that honeydew was not consumed when suitable floral nectar was available. This study demonstrates that honeydew exploitation by O. bicornis is dependent on honeydew type and the presence of floral nectar.  相似文献   

3.
Summary Amino acids occur in most floral nectars but their role in pollinator attraction is relatively unstudied. Nectars of butterfly-pollinated flower tend to have higher concentrations of amino acids than do flowers pollinated by bees and many other animals, suggesting that amino acids are important attractants of butterflies to flowers. In order to determine whether amino acids are important in attracting butterflies and bees, we tested the preference of cabbage white butterflies (Pieris rapae) and honey bees (Apis mellifera) by allowing them to feed from artificial flowers containing sugar-only or sugar-amino acid mimics ofLantana camara nectar. Honey bees and female cabbage white butterflies consumed more sugar-amino acid nectar than sugar-only nectar. In addition, female cabbage white butterflies visited artificial flowers containing sugar-amino acid nectars more frequently than flowers containing sugar-only nectars; honey bees spent more time consuming the sugar-amino acid nectar. Male cabbage white butterflies did not discriminate between the two nectars. These results support the hypothesis that the amino acids of nectar contribute to pollinator attraction and/or feeding.  相似文献   

4.
Mass flowering is a widespread blooming strategy among Neotropical trees that has been frequently suggested to increase geitonogamous pollination. We investigated the pollination ecology of the mass‐flowering tree Handroanthus impetiginosus, addressing its breeding system, the role in pollination of different visitors, the impact of nectar robbers on fruit set and the function of colour changes in nectar guides. This xenogamous species is mainly pollinated by Centris and Euglossa bees (Apidae) seeking nectar, which are known to fly long distances. The flowers favour these bees by having: (1) a closed entrance in newly opened flowers which provides access only to strong bees capable of deforming the flower tube; and (2) a nectar chamber that is accessible only to long‐tongued bees. Only first‐day flowers with yellow nectar guides produce nectar. Pollinators prefer these flowers over second‐ and third‐day flowers with orange and red nectar guides, respectively. Nectar robbers damage two‐thirds of the flowers and this robbing activity decreases fruit set by half. We attribute the low fruit set of H. impetiginosus to the intense nectar robbing and hypothesize that visual signalling of nectar presence in newly opened (receptive) flowers reduces geitonogamy by minimizing bee visits to unrewarding (non‐receptive) flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 396–407.  相似文献   

5.
Hummingbirds in the tropical rainforests of southwestern Costa Rica face intense competition from stingless bees Trigona that steal nectar from hummingbird flowers. Here we document both interference and exploitative competition between bees and hummingbirds at scarlet, hummingbird pollinated flowers of Passiflora vitifolia. Aggressive stingless bees prevented Long-tailed Hermit Hummingbirds Phaethornis superciliosus from feeding at nearly one-third of the passion flowers approached. In exclusion experiments, bees and hummingbirds each removed most of the nectar from treated flowers. Experimental exclusion of bees also increased hummingbird use of both natural and artificial flowers.  相似文献   

6.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

7.
I examined relationships between tongue length of orchid bees (Apidae: Euglossini) and nectar spur length of their flowers in the genera Calathea, Costus, and Dimerocostus using phylogenetically independent contrasts. Long‐tubed flowers have specialized on one or several species of long‐tongued euglossine bees, but long‐tongued bees have not specialized on long‐tubed flowers. Whereas long tongues may have evolved to provide access to a wider variety of nectar resources, long nectar spurs may be a mechanism for flowers to conserve nectar resources while remaining attractive to traplining bee visitors.  相似文献   

8.
Nectar is a vital source of energy for bees and other pollinators and pollen represents the only source of protein in the diet of bees. Nectar and pollen quality and quantity can therefore affect foraging choices. Strawberry, Fragaria × ananassa (Rosaceae), is a flowering crop that requires insect pollination for the berries to develop optimally. The solitary red mason bee, Osmia bicornis L. (Hymenoptera: Megachilidae), occurs naturally but like the eusocial western honeybee, Apis mellifera mellifera L. (Hymenoptera: Apidae), it is also a commercially reared pollinator used in strawberry production. We hypothesized that strawberry nectar and pollen quality would affect the foraging choice of these two types of bees. In this study nectar and pollen quality is represented by various levels of sugar and protein content, respectively, as well as the number of open strawberry flowers in the experimental field, would affect the foraging choice of these two types of bees. Consistent with previous studies, we found significant and major differences between strawberry varieties in proportions of sucrose in the nectar sugar and in pollen viability – a proxy for pollen protein content. All measured parameters had a significant effect on red mason bee visitation frequency. Contrary to expectations, honeybee foraging behavior was only affected by the number of open flowers and not by any of the quality parameters measured. Our findings indicate that red mason bees were capable of assessing nectar and pollen quality and prioritize accordingly. The pattern observed indicates that individual red mason bees changed foraging focus between strawberry varieties depending on whether nectar or pollen was collected. Our results suggest that targeted breeding of varieties toward high levels of nectar sugar and sucrose concentrations and high pollen protein content may increase pollination success from red mason bees and possibly other solitary bees.  相似文献   

9.
Abstract.
  • 1 Carpenter bees (Xylocopa californica arizonensis) in west Texas, U.S.A., gather pollen and ‘rob’ nectar from flowers of ocotillo (Fouquieria splendens). When common, carpenter bees are an effective pollen vector for ocotillo. We examined ocotillo's importance as a food source for carpenter bees.
  • 2 The visitation rate of carpenter bees to ocotillo flowers in 1988 averaged 0.51 visits/flower/h and was 4 times greater than that of queen bumble bees (Bombus pennsylvanicus sonorus), the next most common visitor. Nectar was harvested thoroughly and pollen was removed from the majority of flowers. Hummingbird visits were rare.
  • 3 Pollen grains from larval food provisions were identified from sixteen carpenter bee nests. On average, 53% of pollen grains sampled were ocotillo, 39% were mesquite (Prosopis glandulosa), and 8% were Zygophyllaceae (Larrea tridentata or Guaiacum angustifolium). Carpenter bee brood size averaged 5.8 per nest.
  • 4 We measured the number of flowers, and production of pollen and nectar per flower by mature ocotillo plants, as well as the quantity of pollen and sugar in larval provisions. An average plant produced enough pollen and nectar sugar to support the growth of eight to thirteen bee larvae. Ocotillo thus has the potential to contribute significantly to population growth of one of its key pollinators.
  • 5 Although this carpenter bee species, like others, is a nectar parasite of many plant species, it appears to be engaged in a strong mutualism with a plant that serves as both a pollen and as a nectar source during carpenter bee breeding periods.
  相似文献   

10.
Approximately one-third of the world's estimated 30,000 orchid species are deceptive and do not reward their pollinators with nectar or pollen [1]. Most of these deceptive orchids imitate the scent of rewarding flowers or potential mates [2] and [3]. In this study, we investigated the floral scent involved in pollinator attraction to the rewardless orchid Dendrobium sinense, a species endemic to the Chinese island Hainan that is pollinated by the hornet Vespa bicolor. Via chemical analyses and electrophysiological methods, we demonstrate that the flowers of D. sinense produce (Z)-11-eicosen-1-ol and that the pollinator can smell this compound. This is a major compound in the alarm pheromones of both Asian (Apis cerana) and European (Apis mellifera) honey bees [4] and [5] and is also exploited by the European beewolf (Philanthus triangulum) to locate its prey [6]. This is the first time that (Z)-11-eicosen-1-ol has been identified as a floral volatile. In behavioral experiments, we demonstrate that the floral scent of D. sinense and synthetic (Z)-11-eicosen-1-ol are both attractive to hornets. Because hornets frequently capture honey bees to feed to their larvae, we suggest that the flowers of D. sinense mimic the alarm pheromone of honey bees in order to attract prey-hunting hornets for pollination.  相似文献   

11.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

12.
Abstract.
  • 1 Honey bees foraging for nectar on lavender (Lavandula stoechas) chose inflorescences with more of their flowers open. The number of open flowers predicted whether an inflorescence was visited by bees, inspected but rejected, or ignored. Inflorescences chosen arbitrarily by observers had numbers of open flowers intermediate between those of visited and ignored inflorescences.
  • 2 Differences in morphological characters between types of inflorescence correlated with nectar volume and sugar weight per flower so that visited inflorescences had a disproportionately greater volume of nectar and weight of sugar per flower and greater variance in nectar volume.
  • 3 Although there were significant associations between nectar content and the morphological characters of inflorescences, discriminant function analysis revealed discrimination on the basis of morphology rather than nectar content.
  • 4 Visited inflorescences tended to have smaller than average flowers but bees tended to probe the largest flowers on visited inflorescences.
  • 5 Choice of flowers within inflorescences is explicable in terms of the relationship between flower size and nectar content.
  相似文献   

13.
We offered Australian tropical stingless bees (Trigona hockingsi) artificial nectar (30% sucrose w/v) either with or without added amino acids (3.30 mM). Bees showed no preference for nectar type, suggesting that sugars, rather than amino acids, play a greater role in nectar choice by this species.  相似文献   

14.
1. Plants produce antimicrobial phytochemicals that can reduce growth and infectivity of parasites in animals. Pollinator parasites are transmitted between hosts that forage on shared flowers. Floral transmission directly exposes parasites to phytochemicals on floral surfaces and in nectar, both at flowers and, post‐ingestion, in the crop. This exposure could directly affect parasite transmission to new hosts. 2. Nectar chemical analyses were combined with field and cell culture experiments to test the effects of the floral phytochemical thymol on the transmission potential of the trypanosomatid gut parasite Crithidia in Bombus impatiens. First, thymol concentrations in Thymus vulgaris nectar were measured. Second, the effect of adding thymol to floral nectaries on parasite transmission to foraging bees was tested. Third, cell cultures were used to determine direct, dose‐dependent effects of short‐term thymol exposure on subsequent in vitro parasite growth. 3. A total of 26.1 ppm thymol was found in T. vulgaris nectar, five‐fold higher than previously documented in this species. However, addition of thymol to flowers of parasite‐inoculated inflorescences of four plant species did not affect acquisition of Crithidia infection during a foraging bout. Cell culture experiments showed that the thymol concentrations needed to reduce subsequent Crithidia growth by 50% (120 ppm) were 4.6‐fold higher than the highest detected nectar concentration. 4. Although thymol exposure can influence Crithidia viability, Crithidia are robust to the duration and magnitude of exposure encountered during floral foraging under natural conditions. These experiments suggest that any effects of thymol alone on Crithidia–host infection dynamics probably reflect indirect, possibly host‐mediated, effects of chronic thymol ingestion.  相似文献   

15.
An account is given of the flower of Echium plantagineum in south-eastern Australia, including stages and timing of flowering, behaviour of raindrops in the flower and aspects of floral microclimate. The concentration of nectar solutes varied with time and site, with means varying from 2 to 62% (as g sucrose/100 g solution). There was a significant negative correlation between nectar solute concentration and ambient relative humidity: the drier the air, the more concentrated the nectar. Rates of nectar secretion per flower varied with the bagging method, with long-term bagging reducing net secretion rates, possibly because of re-absorption. Rates varied with time, day and site, with a temporal pattern of change suggesting a link between rates of photosynthesis and secretion. Maximum nectar secretion rates in short-term bagging experiments were ca. 300 μg sugar/flower/hr (equivalent to > 2 mglflower/24 hr). Secretion rate was correlated with flower density. As flower density increased, secretion rate per flower decreased; rate of sugar production per unit area increased relatively more slowly than flower density. E. plantagineum could produce > 500 mg sugar/m2/day. Honeybees foraged on E. plantagineum only at ambient air temperatures above ca. 17°C unless irradiance exceeded ca. 750 W m-2. Foragers collected nectar or pollen alone, or both, with the type of visit significantly correlated with nectar solute concentration. Below 35% (as g sucrose/100 g solution) most bees took pollen only; above 40%, most took nectar. Mean standing crop of nectar was generally < 100 μg/flower when most bees were taking nectar, but could exceed 1000 μg/flower when bees were absent or foraging mainly for pollen. Honeybees did not always remove all nectar from flowers they probed. Reabsorption of residual nectar may augment the following day's secretion.  相似文献   

16.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

17.
Vernal grass fires may encourage profuse flowering in clonal, colonies ofOxalis violacea. Long-styled colonies appear to be more floriferous than short-styled colonies and set a greater number of capsules. Individual flowers of both morphs live one or two days, change position on their respective pedicels and advertise nectar concealed at the base of the floral throat. AlthoughDiptera, Hymenoptera, andLepidoptera forage for nectar, bees (Andrenidae,Anthophoridae, Halictidae, andMegachilidae) probably make the only effective pollen transfers between the two morphs. Both male and female bees may transport pollen of both morphs and short-tongued bees (e.g.,Augochlorella spp.,Dialictus spp.) may be more common but as effective as pollinators as long-tongued bees (e.g.,Calliopsis andreniformis andHoplitis spp.). The conversion rate of flowers into capsules is only 13–17%. The spreading style in the short-styled morph is interpreted as an adaptation restricting insect-mediated, self-pollination but encouraging bee-stigma contact during nectar foraging.  相似文献   

18.
  1. The giant willow aphid (Tuberolachnus salignus) is an invasive pest that can attain large populations on willows (Salix spp.). This has the potential to have a negative impact on the extensive use of willows for soil conservation, and as a source of pollen and nectar for honey bees in New Zealand.
  2. A willow nursery field trial was established to evaluate the aphid populations, and the survival and growth of young plants of several willow species and hybrids, during two growing seasons from planting.
  3. The willow species and hybrids varied widely in their susceptibility to the aphid, with large aphid populations and plant mortality in the most susceptible willows, and reductions in plant growth in all but aphid-resistant willows. The effects on the plants were not seen in the first season, but occurred during the second season.
  4. The aphid can be expected to have some negative impacts in New Zealand, with reductions in growth of some willows commonly used for soil conservation, and for pollen and nectar for honey bees.
  相似文献   

19.
1. Competition alters animal foraging, including promoting the use of alternative resources. It may also impact how animals feed when they are able to handle the same food with more than one tactic. Competition likely impacts both consumers and their resources through its effects on food handling, but this topic has received little attention. 2. Bees often use two tactics for extracting nectar from flowers: they can visit at the flower opening, or rob nectar from holes at the base of flowers. Exploitative competition for nectar is thought to promote nectar robbing. If so, higher competition among floral visitors should reduce constancy to a single foraging tactic as foragers will seek food using all possible tactics. To test this prediction, field observations and two experiments involving bumble bees visiting three montane Colorado plant species (Mertensia ciliata, Linaria vulgaris, Corydalis caseana) were used under various levels of inter- and intra-specific competition for nectar. 3. In general, individual bumble bees remained constant to a single foraging tactic, independent of competition levels. However, bees that visited M. ciliata in field observations decreased their constancy and increased nectar robbing rates as visitation rates by co-visitors increased. 4. While tactic constancy was high overall regardless of competition intensity, this study highlights some intriguing instances in which competition and tactic constancy may be linked. Further studies investigating the cognitive underpinnings of tactic constancy should provide insight on the ways in which animals use alternative foraging tactics to exploit resources.  相似文献   

20.
The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号