首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduced predators are a serious threat to Australian vertebrates. However, the consequences of predation for an area's avifauna have rarely been quantified. We took advantage of the establishment of a 7,832 ha fox‐ and cat‐free safe haven at Mt Gibson, in Western Australia, to assess the consequences of excluding introduced mammal predators on the bird fauna. Bird surveys were conducted over 6 years, before and after the establishment of the introduced predator‐free safe haven. After 3 years, half the sites were enclosed by the fence that excluded introduced predators, while the remainder of sites remained outside the fence and were exposed to fox and cat activity. The sites were stratified by four major vegetation types. A total of 91 bird species were variously detectable with the survey approach, but were typically more detectable during morning surveys. Site occupancy varied considerably among species, but overall, occupancy by all species was most likely to be either not impacted or positively impacted by the safe haven. The most notable change was that avifaunal richness appeared to increase in woodland and shrubland habitats within, as compared to outside, the safe haven. We conclude that: (1) the safe haven had an overall positive impact on bird occupancy; and (2) there were no consistent trends with respect to the kinds of species whose occupancy was positively impacted, beyond them all being small‐ to medium‐sized birds and mostly insectivorous. However, these conclusions must be tempered by the poor detection probability of many species.  相似文献   

2.
3.
Ancient plant species surviving in isolated small populations are particularly vulnerable to extinction, therefore understanding their population dynamics is necessary for conservation. The iteroparous perennial relic endemic Ferula sadleriana Ledeb. (Apiaceae) is restricted to seven distant localities in the Carpathian Basin, where it inhabits rocky hills. We monitored the species' largest population on the Pilis Hill, Hungary, over 14–19 years (depending on trait) between 1979 and 2010, and relationships were sought between climatic properties and population attributes. The population of 4000 ± 1509 emergent individuals underwent large interannual fluctuations, with the vegetative stage displaying sevenfold and the reproductive stage twenty‐eight‐fold differences. Spring and early summer precipitation had a marked influence on abundances and seed set. Alternating years of high and low counts of reproductive plants suggest costs of reproduction that most probably incur prolonged dormancy and retrogression to the vegetative stage. Seed set was positively influenced by number of reproductive plants over years and by plant size within a year. Ungulates nullify yearly reproductive output by grazing on reproductive individuals. This is particularly intense in dry summers, when reproductive output is already low. The strong precipitation response of abundance, absence of clonal propagation and soil seed bank, and geographical isolation of the populations place F. sadleriana at considerable risk under an increasingly variable and extreme climate. Management should seek to maintain the species' original habitat mosaic (potentially compensating for climate variation), minimize grazing damage and anthropogenic disturbance, and establish ex situ conservation programs to provide propagules for eventual reintroduction.  相似文献   

4.
Kalan Ickes 《Biotropica》2001,33(4):682-690
This study reports extraordinarily high density estimates for the wild pig (Sus scrofa) from an aseasonal tropical forest site within the species'native range. At Pasoh Forest Reserve, a 2500 ha area of lowland dipterocarp rain forest in Peninsular Malaysia, line transects were used to estimate pig density from May to October in 1996 and 1998. In 1996, 44 sightings of S. scrofa consisting of 166 individuals were recorded along 81 km of transects. In 1998, 39 sightings documented 129 individuals along 79.9 km of transects. Estimated population density was 47.0 pigs/km2 in 1996 and 27.0 pigs/km2‐ in 1998. Sus scrofa biomass in this forest was estimated at 1837 kg/km2 and 1346 kg/ km2 in 1996 and 1998, respectively. Differences between years were attributed to changes in the density of young pigs, coincident with a mast‐seeding year of dipterocarp trees in 1996. Pig densities at Pasoh Forest Reserve were much higher than at other forest locations within the species' native range in Europe and Asia. Because Pasoh Forest Reserve is a forest fragment, two factors likely account for the extremely high pig densities: (1) local extinction of natural predators (mainly tigers and leopards) and (2) an abundant year‐round food supply of African oil palm fruits from extensive plantations bordering the reserve.  相似文献   

5.
Microhabitat suitability models are useful tools to enhance the reintroduction success of fish. Since 2008, a translocation and reintroduction program has been carried out in Flanders to prevent substantial loss of genetic variability in the Cottus perifretum (bullhead) population, and to meet the goals set by the Habitat Directive. To this end, habitat suitability of potential headstreams was assessed on a macrohabitat and microhabitat scale prior to the reintroduction. On a macrohabitat scale, water quality, habitat structure, food availability, and fish community were screened. Based on microhabitat models for bullhead in the summer period, microhabitat suitability was assessed in headstreams where macrohabitat characteristics showed a high potential for success. Both macro‐ and microhabitat assessment showed that reintroduction of bullheads in the Nellebeek, Bruelbeek, and Mollendaalbeek would most likely lead to self‐sustaining populations. For the Sint‐Annabeek, the microhabitat suitability model, considering depth and stream velocity, estimates that 7.5–9.5% of the headstream is suitable for bullhead. However, when substratum is taken into account, the microhabitat suitability index shows that only 4.3–5.8% of the brook is suitable. The current habitat quality and quantity in the Sint‐Annabeek is estimated to support a mean total population of 812 bullheads. However, the microhabitat suitability can be substantially improved by the artificial deposition of medium‐sized gravel (5–50 mm) and large gravel (50–100 mm). By doing so, the mean estimated population size could increase up to 1,330 individuals. Our results show that habitat improvement is necessary prior to the reintroduction of bullheads in the Sint‐Annabeek.  相似文献   

6.
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high‐resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine‐resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine‐scale, short‐term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions.  相似文献   

7.
Morphological changes following changes in species' distribution and phenology have been suggested to be the third universal response to global environmental change. Although structural size and body mass result from different genetic, physiological, and ecological mechanisms, they are used interchangeably in studies evaluating population responses to environmental change. Using a 22‐year (1991–2013) dataset including 1768 individuals, we investigated the coupled dynamics of size and mass in a hibernating mammal, the Alpine marmot (Marmota marmota), in response to local environmental conditions. We (i) quantified temporal trends in both traits, (ii) determined the environmental drivers of trait dynamics, and (iii) identified the life‐history processes underlying the observed changes. Both phenotypic traits were followed through life: we focused on the initial trait value (juvenile size and mass) and later‐life development (annual change in size [Δsize] and mass [Δmass]). First, we demonstrated contrasting dynamics between size and mass over the study period. Juvenile size and subsequent Δsize showed significant declines, whereas juvenile mass and subsequent Δmass remained constant. As a consequence of smaller size associated with a similar mass, individuals were in better condition in recent years. Second, size and mass showed different sensitivities to environmental variables. Both traits benefited from early access to resources in spring, whereas Δmass, particularly in early life, also responded to summer and winter conditions. Third, the interannual variation in both traits was caused by changes in early life development. Our study supports the importance of considering the differences between size and mass responses to the environment when evaluating the mechanisms underlying population dynamics. The current practice of focusing on only one trait in population modeling can lead to misleading conclusions when evaluating species' resilience to contemporary climate change.  相似文献   

8.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

9.
Reintroduction projects aim to reestablish a self‐sustaining population of an endangered species within its historical range. Adequate post‐release monitoring by gathering demographic data is important to evaluate the success of a reintroduction. Survival and reproduction rates of a reintroduced population can be compared with a self‐sustaining wild population to evaluate the success of a reintroduction. In early 2007, Nipponia nippon (Crested Ibis) was reintroduced into the Qinling Mountains (Shaanxi, Central China). In this study, we attempt to evaluate the demographic status of the reintroduced population. Age‐specific survival rates of 56 released adults and 77 wild‐born fledglings were estimated using mark‐recapture data obtained from 2007 to 2014. Survival rates for the yearlings (0.599, with 95% confidence interval [CI]: 0.467–0.719) were lower than the estimates from a wild population in Yangxian County, but the survival rates of the adults (0.678, with 95% CI: 0.603–0.745) were similar. The number of breeding pairs gradually increased since 2008, although breeding success (52.5%) was somewhat less than that of the wild population (67.6%). The stochastic estimation of population growth rate (1.084 with 95% CI: 1.069–1.098) and population size (5‐fold increase) estimated from an age‐classified Leslie matrix indicate that the reintroduced population of the Crested Ibis is more likely in regulation phase over the next 25 years. We conclude that the reintroduction of the Crested Ibis in Qinling Mountains has great promise, and progress toward a self‐sustaining population has been made under some interventions. Governments, local communities, and scientists need to facilitate habitat restoration for the long‐term survival of this endangered species.  相似文献   

10.
Population estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change. To aid conservation efforts, we provide the first empirical population size estimates of red handfish and investigate other important aspects of the species' life history, such as growth, habitat association, and movement. We surveyed both red handfish local populations via underwater visual census on scuba over 3 years and used photographic mark-recapture techniques to estimate biological parameters. In 2020, the local adult population size was estimated to be 94 (95% confidence interval [CI] 40–231) adults at one site, and 7 (95% CI 5–10) at the other site, suggesting an estimated global population of 101 adults. Movement of individuals was extremely limited at 48.5 m (± 77.7 S.D. ) per year. We also found evidence of declining fish density, a declining proportion of juveniles, and increasing average fish size during the study. These results provide a serious warning that red handfish are likely sliding toward extinction, and highlight the urgent need to expand efforts for ex situ captive breeding to bolster numbers in the wild and maintain captive insurance populations, and to protect vital habitat to safeguard the species' ongoing survival in the wild.  相似文献   

11.
The high failure rate of threatened species translocations has prompted many managers to fence areas to protect wildlife from introduced predators. However, conservation fencing is expensive, restrictive and exacerbates prey naïveté reducing the chance of future co‐existence between native prey and introduced predators. Here, we ask whether two globally threatened mammal species protected in fenced reserves, with a history of predation‐driven decline and reintroduction failure, could co‐exist with introduced predators. We defined co‐existence as population persistence for at least 3 years and successful recruitment. We manipulated the density of feral cats within a large fenced paddock and measured the impact on abundance and reproduction of 353 reintroduced burrowing bettongs and 47 greater bilbies over 3 years. We increased cat densities from 0.038 to 0.46 per square km and both threatened species survived, reproduced and increased their population size. However, a previous reintroduction trial of 66 bettongs into the same paddock found one red fox (Vulpes vulpes), at a density of 0.027 per square km, drove the bettong population extinct within 12 months. Our results show that different predator species vary in their impact and that despite a history of reintroduction failure, threatened mammal species can co‐exist with low densities of feral cats. There may be a threshold density below which it is possible to maintain unfenced populations of reintroduced marsupials. Understanding the numerical relationships between population densities of introduced predators and threatened species is urgently needed if these species are to be re‐established at landscape scales. Such knowledge will enable a priori assessment of the risk of reintroduction failure thereby increasing the likelihood of reintroduction success and reducing the financial and ethical cost of failed translocations.  相似文献   

12.
Understanding what limits the distribution and abundance of species is critical for adopting optimal conservation planning strategies, although it is still difficult to obtain abundance data at broad spatial scales. Here we propose conservation priorities in the Brazilian Cerrado based on density values of 108 mammal species. These values were estimated by an abundant-centre model coupled with McGill and Collin's unified theory for macroecology. We assumed that species' densities decay with a Gaussian distribution towards the range borders from a maximum density placed at the centre of each species' range. We used allometric equations to estimate maximum densities, at the Cerrado region we corrected the estimated densities by the natural vegetation remnants. Then we used a Simulated Annealing algorithm to select alternative sets of areas that met several levels of minimum viable population sizes (MVPSs) for each species. With low MVPSs, there were a small number of highly irreplaceable areas located in the northwest region of the biome, whereas with high MVPSs, highly irreplaceable areas occurred in up to 95% of the biome. By incorporating principles from the unified theory of macroecology, we were able to generate a conservation network for the Cerrado biome aiming to prioritise species' persistence and not just their presence.  相似文献   

13.
Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture–recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23–0.28 otter/km, or 1 otter/3.57–4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83–104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12–1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8–10 years post‐reintroduction, including 13–21% genetic diversity loss, 84%–87% genetic effective population size decline, and rapid divergence from the source population (F ST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non‐invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts.  相似文献   

14.
Widespread extirpation of native fish populations has led to a rise in species reintroduction efforts worldwide. Most efforts have relied on demographic data alone to guide project design and evaluate success. However, the genetic characteristics of many imperiled fish populations including low diversity, local adaptation, and hatchery introgression emphasize the importance of genetic data in the design and monitoring of reintroduction efforts. Focusing on a case study of brook trout (Salvelinus fontinalis) in North Carolina, we show how the combined use of genetic and demographic data can support reintroduction efforts by improving source population selection and providing opportunities to evaluate genetic viability and adaptive potential in restored populations. Using this combined approach, we reintroduced brook trout into a restored stream from two source populations and monitored changes in genetic diversity and population size in source and recipient populations. Three years after the initial translocation, the reintroduced population had comparable density, but higher genetic diversity, than either source population. This study demonstrates the utility of genetic and demographic data for reintroduction efforts, particularly when extant populations are genetically depauperate and maintaining adaptive potential is a primary restoration goal. However, we emphasize the value of continued monitoring at longer temporal and spatial scales to determine the effects of stochastic process on the long-term adaptive capacity and persistence of reintroduced populations. Overall, inclusion of genetic data in reintroduction efforts offers increased ability to meet project goals while simultaneously conserving critical sources of adaptive variation that exist across the landscape.  相似文献   

15.

Background

Animals captive bred for reintroduction are often housed under conditions which are not representative of their preferred social structure for at least part of the reintroduction process. Specifically, this is most likely to occur during the final stages of the release programme, whilst being housed during transportation to the release site. The degree of social stress experienced by individuals during this time may negatively impact upon their immunocompetence.

Methodology/Principal Findings

We examined two measure of stress - body weight and Leukocyte Coping Capacity (LCC) - to investigate the effects of group size upon captive-bred water voles destined for release within a reintroduction program. Water voles were housed in laboratory cages containing between one and eight individuals. LCC scores were negatively correlated with group size, suggesting that individuals in larger groups experienced a larger degree of immuno-suppression than did individuals housed in smaller groups or individually. During the course of the study mean body weights increased, in contrast to expectations from a previous study. This was attributed to the individuals sampled being sub-adults and thus growing in length and weight during the course of the investigation.

Conclusions/Significance

The reintroduction process will inevitably cause some stress to the release cohort. However, for water voles we conclude that the stress experienced may be reduced by decreasing group size within captive colony and/or transportation housing practises. These findings are of significance to other species'' reintroductions, in highlighting the need to consider life-history strategies when choosing housing systems for animals being maintained in captivity prior to release to the wild. A reduction in stress experienced at the pre-release stage may improve immunocompetence and thus animal welfare and initial survival post-release.  相似文献   

16.
The Sanje mangabey (Cercocebus sanjei) is endemic to the Udzungwa Mountains, Tanzania, and is classified as Endangered due to its putatively declining population size, habitat degradation and fragmentation. Previous population size estimates have ranged from 1,350 to 3,500 individuals, with the last direct survey being conducted 15 years before the present study. Previous estimates are now thought to have underestimated the population due to a limited knowledge of group and habitat size, nonsystematic approaches and the use of visual methods that are not suitable for surveying the Sanje mangabey with its semi-terrestrial and elusive behaviors. We used an acoustic survey method with observers recording the distinctive “whoop-gobble” vocalization produced by mangabeys and point transect distance sampling to model a detection function and estimate abundance. Twenty-eight surveys were conducted throughout the two forests where Sanje mangabeys are found: Mwanihana forest in the Udzungwa Mountains National Park (n = 13), and the Uzungwa Scarp Nature Reserve (n = 15). Group density was found to be significantly lower in the relatively unprotected Uzungwa Scarp forest (0.15 groups/km2; 95% CI: 0.08–0.27) compared to the well-protected Mwanihana forest (0.29 groups/km2; 95% CI: 0.19–0.43; p = .03). We estimate that there are 1,712 (95% CI: 1,141–2,567) individuals in Mwanihana and 1,455 (95% CI: 783–2,702) in the Uzungwa Scarp, resulting in a total population size of 3,167 (95% CI: 2,181–4,596) individuals. The difference in group density between sites is likely a result of the differing protection status and levels of enforcement between the forests, suggesting that protection of the Uzungwa Scarp should be increased to encourage recovery of the population, and reduce the threat of degradation and hunting. Our results contribute to the reassessment of the species' IUCN Red List status and informing management and conservation action planning.  相似文献   

17.
Improving our capacity for predicting range shifts requires improved theory exploring the interplay between ecological and evolutionary processes and the (changing) environment. We introduce an individual‐based model incorporating simple stage structure and genetically determined resource allocation rules. Population dynamics are mediated by the resources available and the individual's genetics, and density dependence emerges solely as a consequence of resource levels decreasing as population density increases. Running the model for a set of stylised range‐expansion scenarios reveals the extent to which eco‐evolutionary processes can matter: spatial assortment of individuals possessing effective range expansion strategies (higher dispersal propensity, semelparity rather than iteroparity) can substantially accelerate range advance, and this is more important than the contribution of novel mutations arising during range expansion. In simulations of range expansion there is a greater risk of extinction when all individuals are given the mean strategy evolved in a stationary range. Additionally, our results demonstrate that the erosion of inter‐individual variability during a range‐shift can depress population abundance for lengthy periods, even after the climate has stabilised. Our theoretical results highlight the importance of accounting for inter‐individual variability in future predictive modelling of species' responses to environmental change.  相似文献   

18.
Within a species' distribution, populations are often exposed to diverse environments and may thus experience different sources of both natural and sexual selection. These differences are likely to impact the balance between costs and benefits to individuals seeking reproduction, thus entailing evolutionary repercussions. Here, we look into an unusual population (Baltic Sea) of the broadnosed pipefish, Syngnathus typhle, where males do not seem to select females based on size and hypothesize that this pattern may derive from a reduction in direct benefits to the male. We further hypothesize that if larger females do not persistently secure a higher reproductive success, either through pre‐ or postcopulatory sexual selection, a decrease in sexual size dimorphism in the Baltic population should be apparent, especially when contrasted with a well‐studied population, inhabiting similar latitudes (Swedish west coast), where males prefer larger females. We found that, in the Baltic population, variation in female quality is low. We were unable to find differences in abortion rates or protein concentration in oocytes produced by females of contrasting sizes. Direct benefits from mating with large partners seem, thus, reduced in the Baltic population. We also found no evidence of any postcopulatory mechanism that could favor larger mothers as embryo development was unrelated to female size. While female size can still be selected through intrasexual competition or fecundity selection, the pressure for large female body size seems to be lower in the Baltic. Accordingly, we found a noticeable decrease in sexual size dimorphism in the Baltic population. We conclude that, although far from negating the significance of other selective processes, sexual selection seems to have a decisive role in supporting pipefish sexual size asymmetries.  相似文献   

19.
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non‐linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.  相似文献   

20.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号