首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The diatom Pseudo‐nitzschia is a significant component of coastal waters worldwide and a producer of the potent neurotoxin, domoic acid. Sixteen species belonging to this genus have been reported from Australian waters, but the potentially toxic species P. caciantha has not been previously known from this region. Two clonal strains of P. caciantha were isolated from Coogee Beach, south‐east Australia, and the morphological, molecular and toxicological evidence for this species delineation were examined using light and transmission electron microscopy, phylogenetic analysis based on sequences of the second internal transcribed spacer and domoic acid production as measured by liquid chromatography–mass spectrometry. The results unambiguously confirmed that these isolates are the potentially toxic species P. caciantha , being only the second report of this species in the Southern Hemisphere. The potential for further hidden Pseudo‐nitzschia diversity in these waters is considerable.  相似文献   

2.
Several coastal countries including France have experienced serious and increasing problems related to Pseudo‐nitzschia toxic blooms. These toxic blooms occur in estuarine and coastal waters potentially subject to fluctuations in salinity. In this study, we document for the first time the viability, growth, photosynthetic efficiency, and toxin production of two strains of Pseudo‐nitzschia australis grown under conditions with sudden salinity changes. Following salinity variation, the two strains survived over a restricted salinity range of 30–35, with favorable physiological responses, as the growth, effective quantum yield and toxin content were high compared to the other conditions. In addition, high cellular quotas of domoic acid (DA) were observed at a salinity of 40 for the strain IFR‐PAU‐16.1 in comparison with the other strain IFR‐PAU‐16.2 where the cell DA content was directly released into the medium. On the other hand, the osmotic stress imposed at lower salinities, 20 and 10, resulted in cell lysis and a sudden DA leakage in the medium. Intra‐specific variability was observed in growth and toxin production, with the strain IFR‐PAU‐16.1 apparently able to withstand higher salinities than the strain IFR‐PAU‐16.2. On the whole, DA does not appear to act as an osmolyte in response to sudden salinity changes. Since most of the shellfish harvesting areas of bivalve molluscs in France are located in areas where the salinity generally varies between 30 and 35, Pseudo‐nitzschia australis blooms might potentially impact public health and commercial shellfish resources in these places.  相似文献   

3.
Pseudo‐nitzschia H. Peragallo is a marine diatom genus found worldwide in polar, temperate, subtropical and tropical waters. It includes toxigenic representatives that produce domoic acid (DA), a neurotoxin responsible for Amnesic Shellfish Poisoning. In this study we characterized two species of Pseudo‐nitzschia collected from Port Stephens and the Hawkesbury River (south eastern Australia) previously unreported from Australian waters. Clonal isolates were sub‐sampled for (i) light and transmission electron microscopy; (ii) DNA sequencing, based on the nuclear‐encoded partial large subunit ribosomal RNA gene and internal transcribed spacer (ITS)‐ITS1, 5.8S and ITS2 rDNA regions and, (iii) DA production as measured by liquid chromatography‐mass spectrometry. Morphological and molecular data unambiguously revealed the species to be Pseudo‐nitzschia micropora Priisholm, Moestrup & Lundholm (Port Stephens) and Pseudo‐nitzschia hasleana Lundholm (Hawkesbury River). This is the first report of the occurrence of these species from the Southern Hemisphere and the first report of P. micropora in warm‐temperate waters. Cultures of P. micropora, tested for DA production for the first time, proved to be non‐toxic. Similarly, no detectable toxin concentrations were observed for P. hasleana. Species resolution and knowledge on the toxicity of local Pseudo‐nitzschia species has important implications for harmful algal bloom monitoring and management.  相似文献   

4.
Plankton samples from three inland embayments and several outer coastal sites of Washington State were collected from 1997 through 1999 and were examined for the presence of diatoms of the genus Pseudo‐nitzschia and levels of the toxin, domoic acid (DA). Seven species were observed, including Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle, P. multiseries (Hasle) Hasle, P. australis Frenguelli, P. fraudulenta (Cleve) Hasle, P. cf. heimii Manguim, P. pseudodelicatissima (Hasle) Hasle, and P. delicatissima (Cleve) Heiden. The coastal Pseudo‐nitzschia species assemblages differed significantly from those observed within embayments. The dominant species observed at coastal sites were P. pseudodelicatissima and P. cf. heimii. Pseudo‐nitzschia assemblages found in embayments included one or more of the following species: P. pungens, P. multiseries, P. australis, P. pseudodelicatissima, and P. fraudulenta. The nuclear large subunit rRNA gene was sequenced for six of the seven species identified. This sequence revealed that P. multiseries, P. pungens, P. australis, and P. heimii were genetically similar to those found in California, whereas P. delicatissima and P. pseudodelicatissima were distinct from the California isolates. Although the concentrations of DA in razor clams along Washington State coasts have exceeded regulatory limits several times since 1991, levels of DA in shellfish from Washington State embayments have not yet exceeded regulatory limits. The widespread presence of toxin‐producing Pseudo‐nitzschia species suggests, however, that toxic blooms are likely to occur within embayments in the future. In conjunction with the monitoring of environmental conditions conducive to toxic bloom formation, the development of species‐specific probes for rapid and accurate detection of potentially toxic Pseudo‐nitzschia species in this region would enable the forecasting of a toxic event before DA accumulates in shellfish, thereby reducing the impacts to coastal communities.  相似文献   

5.
Species belonging to the potentially harmful diatom genus Pseudo‐nitzschia, isolated from 16 localities (31 sampling events) in the coastal waters of south‐eastern Australia, were examined. Clonal isolates were characterized by (i) light and transmission electron microscopy; (ii) phylogenies, based on sequencing of nuclear‐encoded ribosomal deoxyribonucleic acid (rDNA) regions and, (iii) domoic acid (DA) production as measured by liquid chromatography–mass spectrometry (LC‐MS/MS). Ten taxa were unequivocally confirmed as Pseudo‐nitzschia americana, P. arenysensis, P. calliantha, P. cuspidata, P. fraudulenta, P. hasleana, P. micropora, P. multiseries, P. multistriata, and P. pungens. An updated taxonomic key for south‐eastern Australian Pseudo‐nitzschia is presented. The occurrence of two toxigenic species, P. multistriata (maximum concentration 11 pg DA per cell) and P. cuspidata (25.4 pg DA per cell), was documented for the first time in Australia. The Australian strains of P. multiseries, a consistent producer of DA in strains throughout the world, were nontoxic. Data from 5,888 water samples, collected from 31 oyster‐growing estuaries (2,000 km coastline) from 2005 to 2009, revealed 310 regulatory exceedances for “Total Pseudo‐nitzschia,” resulting in six toxic episodes. Further examination of high‐risk estuaries revealed that the “P. seriata group” had highest cell densities in the austral summer, autumn, or spring (species dependent), and lowest cell densities in the austral winter, while the “P. delicatissima group” had highest in winter and spring.  相似文献   

6.
The aim of our research was to study the composition of Pseudo‐nitzschia species during a period when neurotoxin domoic acid (DA) was present in shellfish. Sampling was conducted in Ka?tela Bay (Central Adriatic Sea), between November 2015 and January 2016. Concentrations of DA analyzed in various shellfish species were low, below the regulatory limit, while the highest abundance of Pseudo‐nitzschia spp. reached 1.85 × 105 cells L?1 in the surface layer, at the beginning of November. Within the temperature and salinity range recorded during the investigated period, a positive correlation of Pseudo‐nitzschia spp. abundance was recorded with temperature. Morphological analyses by scanning electron microscopy revealed the presence of five Pseudo‐nitzschia species that had already been reported in the Adriatic Sea – P. calliantha, P. delicatissima, P. fraudulenta, P. pseudodelicatissima /P. cuspidata and P. subfraudulenta as well as an unknown Pseudo‐nitzschia sp. The composition of the Pseudo‐nitzschia assemblage changed over the investigated period. The species P. pseudodelicatissima/P.cuspidata was found throughout the entire period and the highest diversity was noticed in January, when all six observed species were recorded. These results represent the first taxonomical investigation of the genus Pseudo‐nitzschia in Ka?tela Bay, as well as the first report of DA in shellfish from this area.  相似文献   

7.
Domoic acid (DA) is a neurotoxic amino acid produced by several members of the diatom genus Pseudo‐nitzschia. Trophic transfer of DA up the food chain has been implicated in the deaths of 100's of marine birds and marine mammals along the central California Coast. The physiological function of DA in Pseudo‐nitzschia spp. has not been defined, although some evidence indicates that elevated metal concentrations can induce DA accumulation (Subba RAO et al., 1998, P.S.Z.N. Mar. Ecol. 19:31). Although California coastal waters have experienced a decline in several heavy metals from 1977–1990, copper concentrations have increased by as much as 25% (Stephenson, M. D. & Leonard, G. H., 1994, Mar. Poll. Bull. 28:148). Many algae produce chelators, including amino acids, in response to toxic [Cu2+] (Wu et al. 1998, J. Phycol. 34: 113). Domoic acid, a tricarboxylic acid, has 4 functional groups that may readily form chelation complexes with transition metals like copper. Copper enrichment experiments indicate that while Cu2+ is toxic to Pseudo‐nitzschia multiseries at total [Cu] greater than 16.1μM (pCu 6.0), intracellular DA accumulation increases up to this point with no decline in growth rates relative to cultures grown in standard enriched seawater. These data suggest that DA may be accumulated by P. multiseries to mitigate the toxicity of elevated [Cu2+]. Chemiluminescence will be used to quantify the binding affinity (expressed as conditional stability constants, Kc) of DA for Cu2+. Defining the Cu‐DA dose response relationship in Pseudo‐nitzschia can facilitate prediction of future toxic bloom events.  相似文献   

8.
We used a multistrain approach to study the intra‐ and interspecific variability of the growth rates of three Pseudo‐nitzschia species – P. australis, P. fraudulenta, and P. pungens – and of their domoic acid (DA) production. We carried out mating and batch experiments to investigate the respective effects of strain age and cell size, and thus the influence of their life cycle on the physiology of these species. The cell size – life cycle relationship was characteristic of each species. The influence of age and cell size on the intraspecific variability of growth rates suggests that these characteristics should be considered cautiously for the strains used in physiological studies on Pseudo‐nitzschia species. The results from all three species do not support the hypothesis of a decrease in DA production with time since isolation from natural populations. In P. australis, the cellular DA content was rather a function of cell size. More particularly, cells at the gametangia stage of their life cycle contained up to six times more DA than smaller or larger cells incapable of sexual reproduction. These findings reveal a link between P. australis life cycle and cell toxicity. This suggest that life cycle dynamics in Pseudo‐nitzschia natural populations may influence bloom toxicity.  相似文献   

9.
10.
We identified and investigated the potential toxicity of oceanic Pseudo‐nitzschia species from Ocean Station Papa (OSP), located in a high‐nitrate, low‐chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. Despite their relatively low abundances in the indigenous phytoplankton assemblage, Pseudo‐nitzschia species richness is high. The morphometric characteristics of five oceanic Pseudo‐nitzschia isolates from at least four species are described using SEM and TEM. The species identified are Pseudo‐nitzschia dolorosa Lundholm et Moestrup, P. granii Hasle, P. heimii Manguin, and P. cf. turgidula (Hust.) Hasle. Additional support for the taxonomic classifications based on frustule morphology is provided through the sequencing of the internal transcribed spacer 1 (ITS1) rDNA. Pseudo‐nitzschia species identification was also assessed by the construction of ITS1 clone libraries and using automated ribosomal intergenic spacer analysis (ARISA) for environmental samples collected during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES), conducted in close proximity to OSP in July of 2002. Based on ITS1 sequences, the presence of P. granii, P. heimii, P. cf. turgidula, and at least five other putative, unidentified Pseudo‐nitzschia ITS1 variants was confirmed within iron‐enriched phytoplankton assemblages at OSP. None of the oceanic isolates produced detectable levels of particulate domoic acid (DA) when in prolonged stationary phase due to silicic acid starvation. The lack of detectable concentrations of DA suggests that either these strains produce very little or no toxin, or that the physiological conditions required to promote particulate DA production were not met and thus differ from their coastal, toxigenic congeners.  相似文献   

11.
A high degree of pseudo‐cryptic diversity was reported in the well‐studied diatom genus Pseudo‐nitzschia. Studies off the coast of Washington State revealed the presence of hitherto undescribed diversity of Pseudo‐nitzschia. Forty‐one clonal strains, representing six different taxa of the P. pseudodelicatissima complex, were studied morphologically using LM and EM, and genetically using genes from three different cellular compartments: the nucleus (D1–D3 of the LSU of rDNA and internal transcribed spacers [ITSs] of rDNA), the mitochondria (cytochrome c oxidase 1), and the plastids (LSU of RUBISCO). Strains in culture at the same time were used in mating studies to study reproductive isolation of species, and selected strains were examined for the production of the neurotoxin domoic acid (DA). Two new species, P. hasleana sp. nov. and P. fryxelliana sp. nov., are described based on morphological and molecular data. In all phylogenetic analyses, P. hasleana appeared as sister taxa to a clade comprising P. calliantha and P. mannii, whereas the position of P. fryxelliana was more uncertain. In the phylogenies of ITS, P. fryxelliana appeared to be most closely related to P. cf. turgidula. Morphologically, P. hasleana differed from most other species of the complex because of a lower density of fibulae, whereas P. fryxelliana had fewer sectors in the poroids and a higher poroid density than most of the other species. P. hasleana did not produce detectable levels of DA; P. fryxelliana was unfortunately not tested. In P. cuspidata, production of DA in offspring cultures varied from higher than the parent cultures to undetectable.  相似文献   

12.
Several species of the diatom Pseudo‐nitzschia produce the neurotoxin domoic acid (DA). Consumption of fish and shellfish that have accumulated this potent excitotoxin has resulted in severe illness and even death in humans, marine mammals, and seabirds. Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle is a cosmopolitan diatom commonly occurring in the waters of the Pacific Northwest (PNW) and the eastern North Atlantic, including the North Sea. However, genetic and physiological relationships among populations throughout this large geographic distribution have not been assessed. Population genetic parameters (e.g., Hardy–Weinberg equilibrium, linkage equilibrium, FST) calculated for P. pungens collected from the Juan de Fuca eddy region in the PNW indicated the presence of two distinct groups that were more divergent from each other than either was from a P. pungens sample from the North Sea. Geographic heterogeneity was also detected within each of the two PNW groups. These results suggested that the populations of P. pungens recently mixed in the Juan de Fuca eddy region (a seasonally retentive feature off the coasts of Washington State, USA, and Vancouver Island, Canada) but did not exchange genetic material by sexual reproduction. Alternatively, these two groups may be cryptic (morphologically identical, but reproductively isolated) species. Identifying cryptic diversity in Pseudo‐nitzschia is important for bloom prediction and aiding the identification of molecular markers that can be used for rapid detection assay development.  相似文献   

13.
14.
A nonaxenic isolate of the potentially toxic diatom Pseudo‐nitzschia australis (Frenguelli) from Irish waters was tested in two separate batch culture experiments. When grown under a low irradiance (~12 μmol photons·m ? 2·s ? 1 1 Received 20 March 2001. Accepted 21 August 2002.
; 16:8‐h light:dark cycle) for up to 40 days, the culture produced only trace amounts of the neurotoxin domoic acid (DA) during late stationary phase. Growth at a higher irradiance (~115 μmol photons·m ? 2·s ? 1 1 Received 20 March 2001. Accepted 21 August 2002.
; 12:12‐h light:dark cycle) resulted in DA production starting during late exponential phase and reaching a maximum concentration of 26 pg DA·cell ? 1 1 Received 20 March 2001. Accepted 21 August 2002.
during late stationary phase. Liquid chromatography coupled to mass spectrometry was used to confirm the identity of DA in the culture. Irradiance and photoperiod could be important factors that contribute directly or indirectly to the control of DA production in P. australis. This is the first record of a DA‐producing diatom in Irish waters, and results indicate P. australis may have been the source of DA that has recently contaminated shellfisheries in this area.  相似文献   

15.
Sexual reproduction is documented for the first time in field populations of the pennate diatoms Pseudo‐nitzschia australis Freng. and P. pungens (Grunow ex Cleve) Hasle (var. cingulata Villac and hybrids between var. cingulata and var. pungens). A bloom dominated by these species began on June 26, 2006, along Kalaloch Beach, Washington, USA, coincident with a drop in the Si(OH)4:NO3 ratio to below two. Multimodal size distributions were detected for both species, and synchronous auxosporulation occurred within the smallest size class during a 3‐week window. Auxospores and initial cells created a new class of large cells, and cells in the intermediate size classes increased in abundance during auxosporulation. Mating cells of both species were attached to colonies of surf‐zone diatoms. Paired gametangia, gametes, zygotes, auxospores, and large initial cells were found. Auxosporulation began first for P. pungens (June 30), apparently once a critical, high cell concentration was reached, followed by P. australis (July 5), when the total Pseudo‐nitzschia cell concentration reached 929,000 cells · L?1. Low frequencies of auxosporulation occurred throughout the bloom but increased 4‐fold for P. australis and 3‐fold for P. pungens when macronutrients were reduced to low levels on July 11. A 2‐year life cycle was estimated for P. australis and 3 years for P. pungens, both with annual auxosporulation. Domoic acid (DA) in razor clams reached a maximum of 38 μg DA · g?1 on July 18. A significant relationship existed between the percent of cells within the new size range and DA concentrations in razor clams on the same beach.  相似文献   

16.
The genetic structure of phytoplankton populations is largely unknown. In this study we developed nine polymorphic microsatellite markers for the domoic acid–producing marine diatom Pseudo‐nitzschia multiseries (Hasle) Hasle. We then used them in the genotyping of 25 physiologically diverse field isolates and six of their descendants: 22 field isolates originated from eastern Canadian waters, two from European waters, and one from Russian waters. The numbers of alleles per locus ranged from three to seven and the observed heterozygosities from 0.39 to 0.70. A substantial degree of genetic variation was observed within the field isolates, with 23 different genotypes detected. The Russian isolate was the most genetically distinct, although there was also evidence of genetic differentiation at a more local scale. Mating experiments demonstrated that alleles were inherited in a Mendelian manner. Pseudo‐nitzschia multiseries primer pairs were tested on DNA from four congeners: P. calliantha Lundholm, Moestrup et Hasle; P. fraudulenta (P. T. Cleve) Hasle; P. pungens (Grunow ex P. T. Cleve) Hasle; and P. seriata (P. T. Cleve) H. Peragallo. Cross‐reactivity was only observed in P. pungens. Our results are a first step in understanding the genetic variation present at the Pseudo‐nitzschia“species” level and in determining the true biogeographic extent of Pseudo‐nitzschia species.  相似文献   

17.
Blooms of the toxin‐producing diatom Pseudo‐nitzschia commonly occur in Monterey Bay, California, resulting in sea lion mortality events. The links between strandings of California sea lions suffering from domoic acid (DA) toxicity, toxic cell numbers, and their associated DA concentration in Monterey Bay and in sea lion feces were examined from 2004 to 2007. While Pseudo‐nitzschia toxic cells and DA concentrations were detectable in the water column most of the time, they were often at low levels. A total of 82 California sea lions were found stranded in the Bay between 2004 and 2007 with acute or chronic signs associated with DA poisoning. The highest number with detectable DA in feces occurred in April 2007 and corresponded with the presence of a highly toxic bloom in the Bay. Higher DA levels occurred in feces from sea lions stranding with acute toxicosis and lower concentrations in feces of sea lions exhibiting signs of chronic DA poisoning or not exhibiting any neurologic signs. Results indicated that sea lions are likely exposed to varying levels of DA through their prey throughout the year, often at sublethal doses that may contribute to a continued increase in the development of chronic neurologic sequelae.  相似文献   

18.
The genus Pseudo-nitzschia has attracted attention because of production of the toxin, domoic acid (DA), causing Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia blooms occur frequently in Chinese coastal waters, and DA has been detected in several marine organisms, but so far no Pseudo-nitzschia strains from Chinese waters have been shown to produce DA. In this study, monoclonal Pseudo-nitzschia strains were established from Chinese coastal waters and examined using light microscopy, electron microscopy and molecular markers. Five strains, sharing distinct morphological and molecular features differentiating them from other Pseudo-nitzschia species, represent a new species, Pseudo-nitzschia simulans sp. nov. Morphologically, the taxon belongs to the P. pseudodelicatissima group, cells possessing a central nodule and each stria comprising one row of poroids. The new species is characterized by the poroid structure, which typically comprises two sectors, each sector located near opposite margins of the poroid. The production of DA was examined by liquid chromatography tandem mass spectrometry (LC–MS/MS) analyses of cells in stationary growth phase. Domoic acid was detected in one of the five strains, with concentrations around 1.05–1.54 fg cell−1. This is the first toxigenic diatom species reported from Chinese waters.  相似文献   

19.
20.
The genus Pseudo-nitzschia includes several species capable of producing domoic acid, the causative agent of Amnesic Shellfish Poisoning. Some of these species have been recorded frequently in the Gulf of Naples. For one of the species, P. multistriata, which has been recurrently found in our sampling area since 1995, this is the first report for European waters. Here we provide further details on the fine structure of this species. Pseudo-nitzschia multistriata was the only one found to produce domoic acid among all the Pseudo-nitzschia species from the Gulf of Naples, and this finding raises the number of potentially toxic species in this genus to nine. Phylogenetic relationships among several Pseudo-nitzschia species were assessed using the hypervariable domains (D1–D3) of the large subunit (LSU) rDNA. The match between the phylogeny obtained and important taxonomic characters used in this genus are discussed. Results show that P. multistriata clusters with wider species lacking a central larger interspace in the raphe. Close genetic relationships were determined between P. fraudulenta and P. subfraudulenta, and between P. pungens and P. multiseries. Genetic differences among these pairs of species are comparable to those among isolates of P. pseudodelicatissima from the Gulf of Naples, indicating high intraspecific genetic diversity of Pseudo-nitzschia species in the relatively conserved LSU region. This could explain the problematic results obtained when testing a match between species-specific Pseudo-nitzschia LSU probes and our sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号