首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Brazilian peppertree (Schinus terebinthifolius) is a woody perennial that has invaded much of Florida. This native of northeastern Argentina, Paraguay, and Brazil was brought as an ornamental to both the west and east coasts of Florida at the end of the 19th century. It was recorded as an invader of natural areas in the 1950s, and has since extended its range to cover over 280 000 ha. Our goals were to understand the history of this invasion, as one step toward understanding why this exotic was so successful, and ultimately to improve development of biological control agents. We sampled plants from the native and exotic ranges, particularly Florida, and genotyped these individuals at nuclear and chloroplast loci. Nuclear microsatellite and cpDNA loci reveal strong genetic population structure consistent with limited dispersal in the introduced and native ranges. Bayesian clustering of microsatellite data separates the east and west coast plants in Florida into distinct populations. The two chloroplast haplotypes found in Florida are also concordant with this separation: one predominates on the east coast, the other on the west coast. Analysis of samples collected in South America shows that haplotypes as distinct as the two in Florida are unlikely to have come from a single source population. We conclude that the genetic evidence supports two introductions of Brazilian peppertree into Florida and extensive hybridization between them. The west coast genotype likely came from coastal Brazil at about 27 degrees south, whereas the east coast genotype probably originated from another, as yet unidentified site. As a result of hybridization, the Florida population does not exhibit low genetic variation compared to populations in the native range, possibly increasing its ability to adapt to novel environments. Hybridization also has important consequences for the selection of biocontrol agents since it will not be possible to identify closely co-adapted natural enemies in the native range, necessitating more extensive host testing.  相似文献   

2.
    
Determining the geographical origin of an introduced organism can be critical to understanding or managing a non-native species, but is often difficult when the organism is small or inconspicuous. We used a phylogeographical approach to identify the region of endemism and determine the geographical origin of world populations of the seed-feeding wasp Megastigmus transvaalensis (Hussey). This wasp feeds on African Rhus species and South American Schinus species in various locations around the world. Because it is present both in Africa and in South America, it is unclear whether the wasp was originally an African Rhus-feeder that has begun feeding on Schinus or a South American Schinus-feeder that has started feeding on Rhus. Phylogenetic analysis of 800 bp of mitochondrial cytochrome oxidase I sequence data found extensive variation and phylogeographical structure within African M. transvaalensis. Specimens from other locations around the world were all identical in COI sequence and were phylogenetically nested within the African samples. We conclude that M. transvaalensis was originally an African Rhus-feeder that readily attacks Schinus. We evaluate potential pathways of introduction of this wasp to the New World, and we discuss implications of our results for biocontrol efforts against invasive Schinus populations.  相似文献   

3.
A northward shift of range margins in British Odonata   总被引:4,自引:0,他引:4  
Many species are predicted to shift their ranges to higher latitudes and altitudes in response to climate warming. This study presents evidence for 37 species of nonmigratory British dragonflies and damselflies shifting northwards at their range margins over the past 40 years, seemingly as a result of climate change. This response by an exemplar group of insects associated with fresh water, parallels polewards range changes observed in terrestrial invertebrates and other taxa.  相似文献   

4.
    
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.  相似文献   

5.
    
One individual of Sphyraena barracuda was collected on August 5, 2023, in the northern coast of Terceira Island, Azores, Portugal, by spearfishing. In this note, we report this first record and discuss the occurrence, which represents the northernmost one in the north-east Atlantic.  相似文献   

6.
    
Seeds of winter annuals require a summer after-ripening period for dormancy loss and low autumn temperatures for germination. With current and future changes in moisture and temperature, we tested the effects of warming along a relative humidity (RH) gradient on dormancy loss and effects of decreased diurnal temperature range (DTR) on germination. We further reasoned that the effects of changes in these variables would be disproportionate between the exotic and native winter annuals. Seeds of exotic species (Buglossoides arvensis, Lamium purpureum and Ranunculus parviflorus) and co-occurring native species (Galium aparine, Paysonia stonensis and Plantago virginica) were collected in middle Tennessee. After-ripening occurred over a 15–100% RH gradient at 25 and 30°C and germination was tested at 20/10 and 20/15°C. Niche breadth was calculated using Levins' B. Fresh Ranunculus seeds had high germination and those of other species did not. Germination for these species increased with after-ripening, mostly across the RH gradient irrespective of temperature. A decrease in DTR showed mixed results – the extreme being Ranunculus with no germination at 20/15°C. Most exotic species had wider germination niche breadths than native species. With climate change, we suggest that a decrease in DTR may have a larger effect on germination than increasing moisture or warming on dormancy break. Moreover, there is not a clear-cut winner with climate change when we compare exotic versus native species because the responses of our six species were species specific.  相似文献   

7.
    
Climate change is contributing to the widespread redistribution, and increasingly the loss, of species. Geographical range shifts among many species were detected rapidly after predictions of the potential importance of climate change were specified 35 years ago: species are shifting their ranges towards the poles and often to higher elevations in mountainous areas. Early tests of these predictions were largely qualitative, though extraordinarily rapid and broadly based, and statistical tests distinguishing between climate change and other global change drivers provided quantitative evidence that climate change had already begun to cause species’ geographical ranges to shift. I review two mechanisms enabling this process, namely development of approaches for accounting for dispersal that contributes to range expansion, and identification of factors that alter persistence and lead to range loss. Dispersal in the context of range expansion depends on an array of processes, like population growth rates in novel environments, rates of individual species movements to new locations, and how quickly areas of climatically tolerable habitat shift. These factors can be tied together in well-understood mathematical frameworks or modelled statistically, leading to better prediction of extinction risk as climate changes. Yet, species'' increasing exposures to novel climate conditions can exceed their tolerances and raise the likelihood of local extinction and consequent range losses. Such losses are the consequence of processes acting on individuals, driven by factors, such as the growing frequency and severity of extreme weather, that contribute local extinction risks for populations and species. Many mechanisms can govern how species respond to climate change, and rapid progress in global change research creates many opportunities to inform policy and improve conservation outcomes in the early stages of the sixth mass extinction.  相似文献   

8.
    
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

9.
    
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

10.
    
The ecological impacts of multiple stressors are hard to predict but important to understand. When multiple stressors influence foundation species, the effects can cascade throughout the ecosystem. Gulf of Mexico seagrass ecosystems are currently experiencing a suite of novel stressors, including warmer water temperatures and increased herbivory due to tropicalization and conservation efforts. We investigated the impact of warming temperatures and grazing history on plant performance, morphology, and palatability by integrating a mesocosm study using the seagrass Thalassia testudinum with feeding trials using the sea urchin Lytechinus variegatus. Warming temperatures negatively impacted T. testudinum tolerance traits, reducing belowground biomass by 34%, productivity by 74%, shoot density by 10%, and number of leaves per plant by 24%, and negatively impacted resistance traits through 13% lower toughness of young leaves and a trend for reduced leaf carbon:nitrogen. Lytechinus variegatus individuals preferred to consume plants grown under heated conditions, which supports findings of enhanced palatability. Simulated turtle grazing impacted more plant traits than grazing by other herbivores, potentially diminishing plant resilience to future disturbances through reduced rhizome non-structural carbohydrate concentrations and increasing palatability through reduced fiber content and 23% lower leaf carbon:phosphorus. Simulated turtle, simulated parrotfish, and urchin grazing reduced leaf carbon:nitrogen by 11%, also potentially increasing nutritive value. Interactions between warming temperatures and grazers on plant traits were additive for 16 out of 19 response variables. However, the stressors non-additively impacted the number of leaves per plant, fiber content, and epiphyte load. We suggest that the impacts of grazers on leaf turnover rate and leaf age may vary based on water temperature, potentially driving these interactions. Overall, increased temperatures and grazing pressure will likely reduce seagrass resilience, structure, and biomass, potentially impacting feedback systems and producing negative consequences for seagrass cover, associated species, and ecosystem services.  相似文献   

11.
    
The host range of Leurocephala schinusae Davis & Mc Kay (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental weed in the USA and elsewhere in the world. The host range was determined in the laboratory with adult no-choice oviposition (Argentina and USA) and larval development tests (USA). Seventeen plant species in ten genera were selected based on taxonomic relatedness to S. terebinthifolius, economic importance, and availability. Additional information was obtained by sampling foliage of S. terebinthifolius and six other South American native Anacardiaceae species in north-eastern Argentina. In the laboratory, except for Lithrea molleoides and Spondias mombin, all of the tested species were accepted for oviposition with a marked preference for Rhus aromatica. Incipient mines successfully developed into complete mines, pupae and adults on R. aromatica, Rhus copallinum, Schinus molle, Schinus lentiscifolius and S. terebinthifolius. In the field, although L. schinusae showed a clear preference for S. terebinthifolius, the host range, as determined by samples of host use in the native range, included three other Schinus species (S. lentiscifolius, Schinus longifolius, Schinus weinmannifolius) and one Astronium species (Astronium balansae). In conclusion, L. schinusae will not be considered for the biological control of S. terebinthifolius in continental US. However, the utilisation of this species in other infested areas such as Hawaii and Australia should be further discussed.  相似文献   

12.
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.  相似文献   

13.
    
Climate warming threatens the survival of species at their warm, trailing‐edge range boundaries but also provides opportunities for the ecological release of populations at the cool, leading edges of their distributions. Thus, as the climate warms, leading‐edge populations are expected to utilize an increased range of habitat types, leading to larger population sizes and range expansion. Here, we test the hypothesis that the habitat associations of British butterflies have expanded over three decades of climate warming. We characterize the habitat breadth of 27 southerly distributed species from 77 monitoring transects between 1977 and 2007 by considering changes in densities of butterflies across 11 habitat types. Contrary to expectation, we find that 20 of 27 (74%) butterfly species showed long‐term contractions in their habitat associations, despite some short‐term expansions in habitat breadth in warmer‐than‐usual years. Thus, we conclude that climatic warming has ameliorated habitat contractions caused by other environmental drivers to some extent, but that habitat degradation continues to be a major driver of reductions in habitat breadth and population density of butterflies.  相似文献   

14.
    
Climate is a major factor delimiting species’ distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species’ interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become ‘trapped’ if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.  相似文献   

15.
明确区域尺度上外来入侵种的潜在分布格局及其对气候变化的响应对入侵种的预防和控制具有重要意义。以外来入侵植物刺苍耳(Xanthium spinosum L.)为研究对象,以其扩散蔓延的新疆地区为研究区域,结合中国国家气候中心开发的BCC—CSM1—1模式下的将来气候条件,应用MaxEnt模型和ArcGIS空间分析技术构建了未来不同气候变化情景(RCP4.5,8.5)下2050s和2070s的刺苍耳适宜生境预测模型,定量的展示了气候变化情景下刺苍耳在新疆的扩散趋势及其适宜生境的面积空间变化和分布区中心移动轨迹。结果表明:年降雨量、下层土壤有机碳含量、上层土壤pH值、年温度变化范围、降雨量的季节性变化和年平均温度是影响刺苍耳地理分布的主导环境因子;博州、塔城、阿勒泰西北部、哈密中部、巴州北部、克州中部、阿克苏北部、奎屯市、克拉玛依市、五家渠市、喀什市等地为高危入侵风险区;两种气候模式下刺苍耳的各级适生区面积和总适生面积均呈持续增加的变化趋势,且在RCP8.5情景(最高温室气体排放情景)下响应更为敏感;总体上看,刺苍耳在新疆的分布未达到饱和,呈现以塔城中部为中心,向天山北麓和塔克拉玛干北缘方向辐射状扩散,且两种气候变化情景下至2070s分布区中心均向伊犁州奎屯方向移动。  相似文献   

16.
17.
We describe observations of sea lamprey (Petromyzon marinus) and striped bass (Morone saxatilis) incursions into Labrador, Canada. While P. marinus have been periodically observed in similar latitudes, their numbers have conspicuously increased in estuarine environments in 2020. In contrast, M. saxatilis were not observed from Labrador until 2017 but appear to be declining after the initial surge in abundance that peaked in 2018. It remains unclear whether spawning populations of either species exist. Given the potential to negatively affect species of commercial and cultural importance through predation, follow-up surveys are warranted.  相似文献   

18.
19.
1. The British distribution of the butterfly Gonepteryx rhamni (L.) follows closely the range of its natural host plants, Rhamnus catharticus L. and Frangula alnus Miller, suggesting that it is one of the few British butterflies that has a host‐limited distribution. In North Wales, this species has its range margin, and it was recorded only occasionally in a 35‐km2 area prior to the 1980s. Frangula alnus bushes were planted in the area in about 1986, allowing the hypothesis that G. rhamni would expand its range following increased host plant availability to be tested. 2. From 1996 to 1998, the distribution of the butterfly and its host plants, R. catharticus (native), Rhamnus alaternus L. (introduced), and F. alnus (introduced to the area but native to Britain), was mapped in the study area. It was found that the butterfly was more widespread than any of its host plants. Frangula alnus was the most widespread of the host plants, and received most eggs, suggesting that the carrying capacity of the habitat would have increased substantially following the planting of this species. Gonepteryx rhamni was able to complete its lifecycle on both introduced species in the study area. 3. A mark–release–recapture study showed that adult G. rhamni moved an average of 512 m, and 50% of movements were further than 400 m; these values are underestimates. The relatively high mobility of this species suggests that it probably perceives host plants and nectar sources as resource patches (patchy population) in this fragmented landscape, and this population now represents a satellite population of the butterfly's main distribution in Britain. 4. The results presented here confirm empirically the host‐limited distribution of G. rhamni, which expanded following the planting of extra host plants.  相似文献   

20.
    
Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)‐based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier‐based (DFDIST and BayeScan) and association‐based (Isolation‐By‐Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across long‐established and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long‐established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号