首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hermansky‐Pudlak syndrome (HPS) is a rare recessive disorder characterized by oculocutaneous albinism (OCA) or ocular albinism (OA), bleeding tendency, and other symptoms due to multiple defects in tissue‐specific lysosome‐related organelles. Ten HPS subtypes have been characterized with mutations in HPS1 to HPS10, which encode the subunits of BLOC‐1, ‐2, ‐3, and AP‐3. Using next‐generation sequencing (NGS), we have screened 100 hypopigmentation genes in OCA or OA patients and identified four HPS‐1, one HPS‐3, one HPS‐4, one HPS‐5, and three HPS‐6. The HPS‐4 case is the first report in the Chinese population. Among these 20 mutational alleles, 16 were previously unreported alleles (6 in HPS1, 1 in HPS3, 2 in HPS4, 2 in HPS5, and 5 in HPS6). BLOC‐2 and BLOC‐3 were destabilized due to the mutation of these HPS genes which are so far the only reported causative genes in Chinese HPS patients, in which HPS‐1 and HPS‐6 are the most common subtypes. The mutational spectrum of Chinese HPS is population specific.  相似文献   

2.
Since the detection of cell‐free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non‐invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle‐induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno‐ or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.  相似文献   

3.
Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be crucial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM‐MSCs) secrete various cytokines that can regulate the behaviour of neighbouring cell. However, little is known about the role of BM‐MSCs in influencing the migration and the invasion of prostate cancer cells. We hypothesize that the stromal cell‐derived factor‐1α released by BM‐MSCs may play a pivotal role in these processes. To study the interaction between factors secreted by BM‐MSCs and prostate cancer cells we established an in vitro model of transwell co‐culture of BM‐MSCs and prostate cancer cells DU145. Using this model, we have shown that BM‐MSCs produce soluble factors which increase the motility of prostate cancer cells DU145. Neutralization of stromal cell‐derived factor‐1α (SDF1α) via a blocking antibody significantly limits the chemoattractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM‐MSCs greatly activate prosurvival kinases, namely AKT and ERK 1/2. We provide further evidence that SDF1α is involved in the interaction between prostate cancer cells and BM‐MSCs. Such interaction may play an important role in the migration and the invasion of prostate cancer cells within bone.  相似文献   

4.
The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO‐IN‐ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP‐tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast‐associated kinesins, PAKRP1/Kinesin‐12A and PAKRP1L/Kinesin‐12B, as TIO‐interacting proteins and determine TIO‐Kinesin‐12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin‐12 subfamily members mainly through the C‐terminal ARM repeat domain, but with a contribution from the N‐terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.  相似文献   

5.
The protein anosmin‐1, coded by the KAL1 gene responsible for the X‐linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin‐like type 3 (FnIII) domain and the N‐terminal region of anosmin‐1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full‐length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N‐terminal‐truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine‐rich (CR) region is necessary for anosmin‐1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin‐1 produces an unstable protein incapable of action. We also identify the extracellular signal‐regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin‐1 on rat SVZ NPs.  相似文献   

6.
A priority in recent anti‐cancer drug development has been attaining better side‐effect profiles for potential compounds. To produce highly specific cancer therapies it is necessary to understand both the effects of the proposed compound on cancer and on normal cells comprising the rest of the human body. Thus in vitro evaluation of these compounds against non‐carcinogenic cell lines is of critical importance. One of the most recent developments in experimental anti‐cancer agents is 2‐methoxyestradiol‐bis‐sulphamate (2ME‐BM), a sulphamoylated derivative of 2‐methoxyestradiol. The aim of this study was to evaluate the in vitro effects of 2ME‐BM on cell proliferation, morphology and mechanisms of cell death in the non‐carcinogenic MCF‐12A breast epithelial cell line. The study revealed changes in proliferative capacity, morphology and cell death induction in response to 2ME‐BM exposure (24 h at 0.4 µM). Microscopy showed decreased cell density and cell death‐associated morphology (increased apoptotic characteristics), a slight increase in acidic intracellular vesicles and insignificant ultra‐structural aberrations. Mitotic indices revealed a G2M‐phase cell cycle block. This was confirmed by flow cytometry, where an increased fraction of abnormal cells and a decrease in cyclin B1 levels were observed. These results evidently demonstrate that the non‐carcinogenic MCF‐12A cell line is less susceptible when compared to 2ME‐BM‐exposed cancer cell lines previously tested. Further in vitro research into the mechanism of this potentially useful compound is warranted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

8.
The diversity in substrate recognition spectra exhibited by various β‐lactamases can result from one or a few mutations in the active‐site area. Using Escherichia coli TEM‐1 β‐lactamase as a template that efficiently hydrolyses penicillins, we performed site‐saturation mutagenesis simultaneously on two opposite faces of the active‐site cavity. Residues 104 and 105 as well as 238, 240, and 244 were targeted to verify their combinatorial effects on substrate specificity and enzyme activity and to probe for cooperativity between these residues. Selection for hydrolysis of an extended‐spectrum cephalosporin, cefotaxime (CTX), led to the identification of a variety of novel mutational combinations. In vivo survival assays and in vitro characterization demonstrated a general tendency toward increased CTX and decreased penicillin resistance. Although selection was undertaken with CTX, productive binding (KM) was improved for all substrates tested, including benzylpenicillin for which catalytic turnover (kcat) was reduced. This indicates broadened substrate specificity, resulting in more generalized (or less specialized) variants. In most variants, the G238S mutation largely accounted for the observed properties, with additional mutations acting in an additive fashion to enhance these properties. However, the most efficient variant did not harbor the mutation G238S but combined two neighboring mutations that acted synergistically, also providing a catalytic generalization. Our exploration of concurrent mutations illustrates the high tolerance of the TEM‐1 active site to multiple simultaneous mutations and reveals two distinct mutational paths to substrate spectrum diversification.  相似文献   

9.
10.
11.
12.
Bevacizumab in combination with taxanes in HER2‐negative metastatic breast cancer (MBC) patients has shown improved progression‐free survival (PFS), despite the lack of clear overall survival (OS) benefit. We performed a retrospective analysis to evaluate the impact of paclitaxel‐bevacizumab and of maintenance therapy with bevacizumab (BM) and endocrine therapy (ET) in the real‐world practice. We identified 314 HER2‐negative MBC patients treated in 12 cancer centers. Overall, the median PFS and OS were 14 and 40 months, respectively. Among the 254 patients potentially eligible for BM, 183 received BM after paclitaxel discontinuation until progression/toxicity. PFS and OS were improved in patients who had received BM in comparison with those potentially eligible but who did not receive BM (P< 0.0001 and P = 0.001, respectively). Results were confirmed when adjusting for propensity score. Among the 216 hormone‐receptor positive patients eligible for BM, a more favorable PFS and OS were observed when maintenance ET was administered (P < 0.0001). Multivariate analysis showed that PS, BM, number of disease sites and maintenance ET were related to PFS, while response and maintenance ET were related to OS. In hormone‐receptor positive patients, BM produced a significant PFS and a trend towards OS benefit only in absence of maintenance ET (P = 0.0007 and P = 0.06, respectively). In the triple‐negative subgroup, we observed a trend towards a better OS for patients who received BM (P = 0.06), without differences in PFS (P = 0.21). Our results confirmed the efficacy of first‐line paclitaxel‐bevacizumab in real‐world practice; both BM and maintenance ET significantly improved PFS and OS compared to no maintenance therapies. J. Cell. Physiol. 232: 1571–1578, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Stem cells have unique properties such as self‐renewal, plasticity to generate various cell types, and availability of cells of human origin. The characteristics are attentive in the toxicity screening against chemical toxicants. Placenta‐derived stem cells (PDSCs) have been spotlighted as a new cell source in stem cell research recently because they are characterized by their capacity to differentiate into multilineages. However, the use of PDSCs as an in vitro screening model for potential drug candidates has not yet been studied. Here, we analyzed the potentials for bone‐marrow‐derived mesenchymal stem (BM‐MSCs), which is a representative adult stem cells and PDSCs as an in vitro hepatotoxicity screening system, using well‐known hepatotoxicants. BM‐MSCs and PDSCs were analyzed to the potential for hepatogenic differentiation and were cultured with different concentrations of hepatotoxicants for time courses. The viability and ATP‐binding cassette (ABC) transporters were measured by the MTT assay and RT‐PCR, respectively. The sensitivities of PDSCs to hepatotoxicants are more sensitive than those of BM‐MSCs. The viability (IC50) to in PDSCs was less than that of BM‐MSCs after 48 and 72 h (P < 0.05) of CCl4 exposure. The toxicities of CCl4 were decreased by fourfold in hepatogenic differentiation inducing PDSCs compared to the undifferentiated cells. The alteration of ABCGs was observed in PDSCs during differentiation. These findings suggest that the naïve PDSCs expressing ABCGs can be used as a source for in vitro screening system as well as the expression patterns of ABCG1 and ABCG2 might be involved in the sensitivity of PDSCs to hepatotoxicants. J. Cell. Biochem. 112: 49–58, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Pfeiffer syndrome (PS) is one of the classical craniosynostosis syndromes correlated with specific mutations in the human fibroblast growth factor receptor (FGFR) genes, FGFR1 and FGFR2. In this study, we set out to examine the exons in FGFR2 most commonly associated with mutations in PS, exons IIIa and IIIc, in a panel of 78 unrelated individuals with PS by the most sensitive method (direct DNA sequencing). We have identified a total of 18 different mutations among 40 patients; eight of these mutations have not been previously described. The mutational spectrum displays a non-random character with the frequent involvement of cysteine codons. Received: 6 January 1999 / Accepted: 10 March 1999  相似文献   

15.
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. We used a new DN model in tree shrews to validate the use of bone‐marrow mesenchymal stem cell (BM‐MSC) transplantation to treat DN. The DN tree shrew model was established by a high‐sugar and high‐fat diet and four injections of streptozotocin. 4',6‐Diamidino‐2‐phenylindole labelled BM‐MSCs were injected into tree shrews. The DN tree shrew model was successfully established. Blood glucose was significantly increased ( p < 0.01) during the entire experiment. DN tree shrews showed dyslipidemia, insulin resistance and increased 24‐h proteinuria. At 21 days after BM‐MSC transplantation, glucose and levels of triglycerides, total cholesterol and 24‐h urine volume were lower than in tree shrews with DN alone ( p < 0.01) but were still higher than control values ( p < 0.01). Levels of creatinine and urea nitrogen as well as 24‐h proteinuria were lower for DN tree shrews with BM‐MSCs transplantation than DN alone ( p < 0.05). High‐sugar and high‐fat diet combined with STZ injection can induce a tree shrew model of DN. BM‐MSCs injection can home to damaged kidneys and pancreas, for reduced 24‐h proteinuria and improved insulin resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Chronic sun‐damaged (CSD) melanoma represents 10%–20% of cutaneous melanomas and is characterized by infrequent BRAF V600E mutations and high mutational load. However, the order of genetic events or the extent of intra‐tumor heterogeneity (ITH) in CSDhigh melanoma is still unknown. Ultra‐deep targeted sequencing of 40 cancer‐associated genes was performed in 72 in situ or invasive CMM, including 23 CSDhigh cases. In addition, we performed whole exome and RNA sequencing on multiple regions of primary tumor and multiple in‐transit metastases from one CSDhigh melanoma patient. We found no significant difference in mutation frequency in melanoma‐related genes or in mutational load between in situ and invasive CSDhigh lesions, while this difference was observed in CSDlow lesions. In addition, increased frequency of BRAF V600K, NF1, and TP53 mutations (p < .01, Fisher's exact test) was found in CSDhigh melanomas. Sequencing of multiple specimens from one CSDhigh patient revealed strikingly limited ITH with >95% shared mutations. Our results provide evidence that CSDhigh and CSDlow melanomas are distinct molecular entities that progress via different genetic routes.  相似文献   

17.
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non‐homologous end‐joining (cNHEJ) is largely error‐free, alternative end‐joining pathways have been described that are intrinsically mutagenic. Which end‐joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9‐induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta‐mediated end‐joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end‐joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double‐strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ‐dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.  相似文献   

18.
Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll‐like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%–90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well‐utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4‐sufficient and TLR4‐deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4?/? mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high‐throughput RNA‐Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine‐cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM‐CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4?/? mice compared with ApcMin/+ WT mice. In the functional study of core down‐regulation factors, it was found that IL6, GM‐CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.  相似文献   

19.
20.
Notch receptors are a family of cell‐surface proteins that regulate cell fate decisions and growth control. Human NOTCH1 gain‐of‐function mutations–deletions have been found in c. 60% of patients with T‐cell acute lymphoblastic leukaemia (T‐ALL). Therefore, understanding the molecular mechanisms by which dysregulated Notch‐signalling induces leukaemia is of importance and may reveal novel targets for the development of more effective therapies. Zebrafish, Danio rerio, is an ideal model system to use for forward genetic screens to uncover pathways critical for transformation. Danio rerio also have the capacity for small molecule screening for drug discovery. rag2‐ICN1‐EGFP transgenic fish have been created that develop a T‐cell leukaemia, and these fish are now being used in genetic modifier screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号