首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new freshwater species of naked lobose amoebae Korotnevella venosa n. sp. isolated from freshwater pond in St. Petersburg, Russia was studied with light and transmission electron microscopy. Basket scales of this species have six vertical columns supporting perforated rim. The latter has tongue‐like broadening with membranous region. Vertical columns bifurcate at both ends so that neighboring columns are connected by their bifurcations forming combined structure. Basket scales of K. venosa are similar to those of Korotnevella hemistylolepis in having six full‐length vertical columns and perforated rim. At the same time, they are different in having tongue‐like broadening of perforated rim with membranous region and absence of six half‐length columns and an intermediate crosspiece. Phylogenetic trees based on 18S rDNA gene placed K. venosa either at the base of the whole Korotnevella clade, next to K. hemistylolepis, or as a sister to the clade comprising Korotnevella species with latticework basket in large scales.  相似文献   

3.
4.
Two new brackish pleurostomatid ciliates, Amphileptus spiculatus sp. n. and A. bellus sp. n. were collected from mangrove wetlands of southern China and their morphology and molecular phylogeny were studied. Amphileptus spiculatus sp. n. can be distinguished from congeners by the presence of 11–14 right and 6–8 left kineties, two macronuclear nodules and a conspicuous beak‐like anterior body end. Amphileptus bellus sp. n. is characterized by the presence of 2–4 macronuclear nodules, 31–35 right and 6 or 7 left kineties and two types of extrusomes. Phylogenetic analyses based on SSU rDNA sequences data indicate that the family Amphileptidae is paraphyletic.  相似文献   

5.
A new heterolobosean amoeba, Selenaion koniopes n. gen., n. sp., was isolated from 73‰ saline water in the Wieliczka salt mine, Poland. The amoeba had eruptive pseudopodia, a prominent uroid, and a nucleus without central nucleolus. Cysts had multiple crater‐like pore plugs. No flagellates were observed. Transmission electron microscopy revealed several typical heterolobosean features: flattened mitochondrial cristae, mitochondria associated with endoplasmic reticulum, and an absence of obvious Golgi dictyosomes. Two types of larger and smaller granules were sometimes abundant in the cytoplasm—these may be involved in cyst formation. Mature cysts had a fibrous endocyst that could be thick, plus an ectocyst that was covered with small granules. Pore plugs had a flattened dome shape, were bipartite, and penetrated only the endocyst. Phylogenies based on the 18S rRNA gene and the presence of 18S rRNA helix 17_1 strongly confirmed assignment to Heterolobosea. The organism was not closely related to any described genus, and instead formed the deepest branch within the Heterolobosea clade after Pharyngomonas, with support for this deep‐branching position being moderate (i.e. maximum likelihood bootstrap support—67%; posterior probability—0.98). Cells grew at 15–150‰ salinity. Thus, S. koniopes is a halotolerant, probably moderately halophilic heterolobosean, with a potentially pivotal evolutionary position within this large eukaryote group.  相似文献   

6.
7.
A new species of Cochliopodium isolated from freshwater at Arabia Lake in Lithonia, GA, USA is described based on light microscopic morphology, fine structure, and molecular genetic evidence. Cochliopodium arabianum n. sp., previously labeled as “isolate Con1” in prior publications, has been shown to group within the genus Cochliopodium in our molecular phylogenetic analysis. Light microscopy and fine structure evidence indicates the new isolate not only shares characters of the genus but also unique distinctive features. Cochliopodium arabianum n. sp. is typically round when stationary; or oval to sometimes broadly flabellate or triangular in shape during locomotion, with average length of 35 μm and breadth of 51 μm. Fine structure evidence indicates C. arabianum n. sp. has tower‐like scales, lacking a terminal spine, sharing high similarity with its closest relative C. actinophorum. However, the scales of C. arabianum n. sp. are unique in height and the breadth of the base plate. Both morphological and molecular data, including SSU‐rDNA and COI, indicate that this new species falls in a clade sufficiently different from other species to suggest that it is a valid new species.  相似文献   

8.
Morphogenesis of the soil hypotrich ciliate, Holostichides chardezi Foissner, 1987, collected from southeastern China, was investigated using the protargol staining method. The main morphogenetic events follow a similar process with that of its congeners. Phylogenetic analyses based on the SSU rDNA sequence data indicate that Holostichides is nonmonophyletic; H. chardezi, the type species of Holostichides, clusters with H. heterotypicus, while H. terrae is distinctly separate from these species. H. terrae can be distinguished from H. chardezi (type species of Holostichides) and H. heterotypicus by undulating membranes relatively long and distinctly curved (vs. relatively short and straight), pharynx with (vs. without) rod‐shaped structure, and two (vs. more than two) frontoterminal cirri. Therefore, a new genus, Anteholostichides nov. gen., has been proposed for H. terrae. Further, the diagnosis of the genus Holostichides is improved.  相似文献   

9.
A new soil ciliate, Pseudonotohymena antarctica n. g., n. sp., from King George Island, Antarctica, is described based on live observation, protargol impregnation, and its 18S rRNA gene. The new genus Pseudonotohymena is morphologically similar to the genus Notohymena Blatterer and Foissner 1988 in the following characteristics: 18 fronto‐ventral‐transverse cirri, a flexible body, undulating membranes, dorsomarginal kineties, and the number of cirri in the marginal rows. However, Pseudonotohymena differs from Notohymena particularly in the dorsal ciliature, that is, in possessing a nonfragmented dorsal kinety (vs. fragmented). In addition, the molecular phylogenetic relationship of the new species differs from that of Notohymena species. On the basis of the morphological features, the genetic data, and morphogenesis, we establish P. antarctica n. g., n. sp. In addition, the cyst morphology of this species is described.  相似文献   

10.
The peritrich ciliate Epistylis portoalegrensis n. sp. was found in two bodies of freshwater located in Porto Alegre, Southern Brazil. Morphological features were investigated using live and protargol‐stained specimens. The zooids presented a vase to cylindrical shape narrowed at the scopula, and a mean size of 131 × 37 μm in vivo. A C‐shaped macronucleus lay in the middle of the cell close to a single contractile vacuole. The oral infraciliature was typical for the genus, with all infundibular polykineties composed by three distinct rows of kinetosomes. Colonies are often nonbranched with no lateral stalk, carrying several zooids stemming from a single point. Specimens from the two sampling sites showed identical arrangement of the infraciliature, similar morphometry, identical 18S rDNA sequences, and a single nucleotide difference across the more variable ITS regions. Molecular phylogenetic analyses placed E. portoalegrensis in a well‐supported clade containing other Epistylis species, within the order Vorticellida.  相似文献   

11.
We report a new heterotrophic cryptomonad Hemiarma marina n. g., n. sp. that was collected from a seaweed sample from the Republic of Palau. In our molecular phylogenetic analyses using the small subunit ribosomal RNA gene, H. marina formed a clade with two marine environmental sequences, and the clade was placed as a sister lineage of the freshwater cryptomonad environmental clade CRY1. Alternatively, in the concatenated large and small subunit ribosomal RNA gene phylogeny, H. marina was placed as a sister lineage of Goniomonas. Light and electron microscopic observations showed that H. marina shares several ultrastructural features with cryptomonads, such as flattened mitochondrial cristae, a periplast cell covering, and ejectisomes that consist of two coiled ribbon structures. On the other hand, H. marina exhibited unique behaviors, such as attaching to substrates with its posterior flagellum and displaying a jumping motion. H. marina also had unique periplast arrangement and flagellar transitional region. On the basis of both molecular and morphological information, we concluded that H. marina should be treated as new genus and species of cryptomonads.  相似文献   

12.
A novel genus and species within the order Glissmonadida (Cercozoa, Rhizaria), Saccharomycomorpha psychra n. g., n. sp., is described from lichen in the Ny-Ålesund region (High Arctic) and moss in the Fildes peninsula of King George Island (Maritime Antarctica). Cells were spherical and did not appear to present flagella in organic-rich Potato Dextrose Agar medium where they were able to feed osmotrophically. Molecular phylogenetic analyses based on 18S rRNA gene sequence demonstrated that Saccharomycomorpha psychra belong to “clade T” within the order Glissmonadida (Cercozoa, Rhizaria). All three investigated strains could grow at 4 °C and had an optimum growth temperature of 12 °C, 20 °C, and 20 °C, while a maximum growth temperature of 20 °C, 20 °C, and 25 °C, respectively. In conclusion, we established the phenotypic identity of “clade T,” which until now was exclusively detected by environmental sequences, and erect a new family Saccharomycomorphidae for “clade T.” Nomenclatural, morphological and ecological aspects of this novel species are discussed.  相似文献   

13.
A hypotrichous ciliate, Paracladotricha salina n. g., n. sp., was discovered in hypersaline waters (salinity about 80‰) from Qingdao, China. Its morphology and some major ontogenetic stages were studied and the phylogenetic position was estimated using standard methods. Paracladotricha salina is characterized by a flexible, more or less slender body (size 50–120 × 20–35 μm), a gonostomatid oral apparatus, one short and two long frontoventral rows, four macronuclear nodules, almost completely reduced dorsal kineties 1–3, and a loss of several parts of the ciliature, namely, the slightly shortened ciliary row of the adoral membranelles, the paroral, and the buccal, the postoral and pretransverse ventral, the transverse, and the caudal cirri. The ontogenesis is rather simple: anlage II of both filial products and anlage III of the opisthe originate de novo, while anlagen IV and V are formed within the parental rows. This combination of features requires the establishment of a new genus, Paracladotricha, which is, according to the morphological data, closely related to Schmidingerothrix and Cladotricha. The small‐subunit rRNA gene was sequenced, indicating that P. salina is, as also demonstrated by the oral apparatus, a member of the gonostomatids. We provide a first, vague hypothesis about the phylogenetic relationships of the Gonostomatidae, Cladotrichidae, and Schmidingerotrichidae. However, since molecular data of the type species of these higher taxa are lacking, their validity and relationships remain obscure.  相似文献   

14.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

15.
A new heterotrophic flagellate (Andalucia godoyi n. gen. n. sp.) is described from soil. Earlier preliminary 18S rRNA analyses had indicated a relationship with the phylogenetically difficult-to-place jakobid Jakoba incarcerata. Andalucia godoyi is a small (3-5 mum) biflagellated cell with a ventral feeding groove. It has tubular mitochondrial cristae. There are two major microtubular roots (R1, R2) and a singlet root associated with basal body 1 (posterior). The microtubular root R1 is associated with non-microtubular fibres "I,"B," and "A," and divides in two parts, while R2 is associated with a "C" fibre. These structures support the anterior portion of the groove. Several features of A. godoyi are characteristic of jakobids: (i) there is a single dorsal vane on flagellum 2; (ii) the C fibre has the jakobid multilaminate substructure; (iii) the dorsal fan of microtubules originates in very close association with basal body 2; and (iv) there is no "R4" microtubular root associated with basal body 2. Morphological analyses incorporating the A. godoyi data strongly support the monophyly of all jakobids. Our 18S rRNA phylogenies place A. godoyi and J. incarcerata as a strong clade, which falls separately from other jakobids. Statistical tests do not reject jakobid monophyly, but a specific relationship between Jakoba libera and J. incarcerata and/or A. godoyi is rejected. Therefore, we have established a new genus Andalucia n. gen. with the type species Andalucia godoyi n. sp., and transfer Jakoba incarcerata to Andalucia as Andalucia incarcerata n. comb.  相似文献   

16.
17.
Historically, species in Volvocales were classified based primarily on morphology. Although the taxonomy of Chlamydomonas has been re‐examined using a polyphasic approach including molecular phylogeny, that of Chlorococcum (Cc.), the largest coccoid genus in Volvocales, has yet to be reexamined. Six species thought to be synonymous with the oil‐producing alga Ccoleofaciens were previously not confirmed by molecular phylogeny. In this study, seven authentic strains of Cc. oleofaciens and its putative synonyms, along with 11 relatives, were examined based on the phylogeny of the 18S ribosomal RNA (rRNA) gene, comparisons of secondary structures of internal transcribed spacer 1 (ITS1) and ITS2 rDNA, and morphological observations by light microscopy. Seven 18S rRNA types were recognized among these strains and three were distantly related to Cc. oleofaciens. Comparisons of ITS rDNA structures suggested possible separation of the remaining four types into different species. Shapes of vegetative cells, thickness of the cell walls in old cultures, the size of cells in old cultures, and stigma morphology of zoospores also supported the 18S rRNA grouping. Based on these results, the 18 strains examined were reclassified into seven species. Among the putative synonyms, synonymy of Cc. oleofaciens, Cc. croceum, and Cc. granulosum was confirmed, and Cc. microstigmatum, Cc. rugosum, Cc. aquaticum, and Cc. nivale were distinguished from Cc. oleofaciens. Furthermore, another related strain is described as a new species, Macrochloris rubrioleum sp. nov.  相似文献   

18.
The external morphology and internal cell fine structure of a new species of Tovelliaceae, Tovellia rubescens n. sp., is described. Phylogenetic analyses based on partial LSU rDNA sequences place the new species in a clade containing Tovellia species that accumulate red pigments and identify T. aveirensis as its closest known relative. Cells of T. rubescens n. sp. were mostly round and had the cingulum located near the middle, with its ends displaced about one cingular width. Small numbers of distinctly flat cells appeared in culture batches; their significance could not be determined. Cells of the new species in culture batches progressively changed from a yellowish‐green, mainly due to chloroplast colour, to a reddish‐brown colour that appeared associated with lipid bodies. The switch to a reddish colour happened earlier in batches grown in medium lacking sources of N or P. Pigment analyses by HPLC‐MS/MS revealed the presence of astaxanthin and astaxanthin‐related metabolites in the new species, but also in T. aveirensis, in which a reddish colour was never observed. The chloroplast arrangement of T. rubescens n. sp. resembled that of T. aveirensis, with lobes radiating from a central pyrenoid complex. The flagellar apparatus and pusular system fell within the general features described from other Tovelliaceae. A row of microtubules interpretable as a microtubular strand of the peduncle was present. Spiny resting cysts with red contents and an ITS sequence identical to that of cultured material of the new species were found in the original locality.  相似文献   

19.
Wittrockiella is a small genus of filamentous green algae that occurs in habitats with reduced or fluctuating salinities. Many aspects of the basic biology of these algae are still unknown and the phylogenetic relationships within the genus have not been fully explored. We provide a phylogeny based on three ribosomal markers (ITS, LSU, and SSU rDNA) of the genus, including broad intraspecific sampling for W. lyallii and W. salina, recommendations for the use of existing names are made, and highlight aspects of their physiology and life cycle. Molecular data indicate that there are five species of Wittrockiella. Two new species, W. australis and W. zosterae, are described, both are endophytes. Although W. lyallii and W. salina can be identified morphologically, there are no diagnostic morphological characters to distinguish between W. amphibia, W. australis, and W. zosterae. A range of low molecular weight carbohydrates were analyzed but proved to not be taxonomically informative. The distribution range of W. salina is extended to the Northern Hemisphere as this species has been found in brackish lakes in Japan. Furthermore, it is shown that there are no grounds to recognize W. salina var. kraftii, which was described as an endemic variety from a freshwater habitat on Lord Howe Island, Australia. Culture experiments indicate that W. australis has a preference for growth in lower salinities over full seawater. For W. amphibia and W. zosterae, sexual reproduction is documented, and the split of these species is possibly attributable to polyploidization.  相似文献   

20.
A new amoebozoan species, Vermistella arctica n. sp., is described from marine habitats in the central part of Svalbard archipelago. This is the first report on Arctic amoebae belonging to the genus Vermistella Moran and Anderson, 2007, the type species of which was described from the opposite pole of the planet. Psychrophily proved in the new strains qualifies the genus Vermistella as a bipolar taxon. Molecular phylogenetic analyses based on 18S rDNA and actin sequences did not show any affinity of the genus Vermistella to Stygamoeba regulata ATCC® 50892? strain. A close phylogenetic relationship was found between Vermistella spp. and a sequence originating from an environmental sample from Cariaco basin, the largest marine permanently anoxic system in the world. Possible mechanisms of bipolar distribution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号