首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Since it was first introduced into Asia from North America in the early 20th century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine’s proteins. These proteins could have been acquired by host–parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.  相似文献   

4.
Cerambycid adults of the genus Monochamus transmit the pine wood nematode (Bursaphelenchus xylophilus [Steiner et Buhrer] Nickle), the causative agent of pine wilt disease. To confirm the transmission of B. xylophilus between vector species, nematode‐infected Monochamus alternatus Hope and nematode‐free Monochamus saltuarius (Gebler) adults were paired and their behaviour was observed for 107–220 min. In three pairs that exhibited mounting without copulation, nematode transmission occurred, whereas it was not found in another pair without mountings. The effect of nematode transmission between different vector species on the invasion biology of B. xylophilus is discussed.  相似文献   

5.
6.
7.
8.
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD.  相似文献   

9.
In this study, we report on the bacterial community associated with the pinewood nematode Bursaphelenchus xylophilus from symptomatic pine wilted trees, as well as from long-term preserved B. xylophilus laboratory collection specimens, emphasizing the close bacteria–nematode associations that may contribute to pine wilt disease development.  相似文献   

10.
11.
The development process of pine wilt disease caused by Bursaphelenchusxylophilus (Steiner and Buhrer) Nickle, pine wood nematode,was studied ecophysiologically and histologically in relationto pathogenicity of B. xylophilus. Judging from the predawnxylem pressure potential of needles, the heat pulse velocity,and the soil water potential, the control Pinus thunbergii Parl.,used for the study, was not water-stressed. Virulent B. xylophilusisolate can kill non-waterstressed pines. In virulent B. xylophilusisolateinoculated pines, the predawn xylem pressure potentialof needles abruptly decreased when the colour of 1-year-oldneedles changed to brown and then the water conducting functionof the xylem was lost completely. Avirulent B. xylophilus isolatedoes not affect the needle colour and the xylem pressure potentialof pines. Avirulent B. xylophilus isolate-inoculated pines,however, responded to nematode invasion by decreasing hydraulicconductance of stem and root xylems. In addition, oleoresinexudation slightly decreased. The decreased hydraulic conductanceresults from embolism of tracheids caused by cavitation in thecentral part of the xylem. From histological observation, allof the parenchyma cells in virulent B. xylophilus isolateinoculatedpines died. In contrast, the parenchyma cells, degenerated inavirulent B. xylophilus isolateinoculated pines, were limitedin the embolized region of the xylem. The difference betweenthe response of pine to the virulent B. xylophilus isolate invasionand that to avirulent B. xylophilus isolate invasion indicatesthat nematode-induced death of pine relates to the death ofparenchyma cells, as well as the decrease in xylem hydraulicconductance. Key words: Embolism, hydraulic conductance, parenchyma cells, pathogenicity of pine wood nematode, pine wilt disease.  相似文献   

12.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

13.
The Japanese pine sawyer, Monochamus alternatus Hope, is the primary vector of the pinewood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, the causative agent of pine wilt disease in East Asia. The range of B. xylophilus expands through the dispersal capability of its vectors and transport of host trees infested with the pathogenic nematode and its vector. Outbreaks of M. alternatus populations occur together with the epidemics of pine wilt disease, because the insect reproduces on host trees recently killed by the disease. We measured some dispersal and life-history traits of adults for four years to determine the change in flight capability and life history of a field population of beetles in relation to an outbreak. The population monitored exhibited an outbreak and subsequent collapse. The greatest mean body mass, largest area of hind wings, smallest wing load, and shortest preoviposition period were observed in the year of outbreak. By contrast, there was no difference in the ovariole number between pre-outbreak (latent) and outbreak years. The greatest mean hind wing area and smallest wing load suggest likely result in greater flight performance. As other studies showed, adult body mass is related positively to the flight performance and oviposition rate. Moreover, a shortened preoviposition period leads to a high reproduction rate. Thus, adults in outbreak populations are “superdispersers” because they are likely to have enhanced flight capability and reproduction power. This suggests that M. alternatus populations at the onset of a population outbreak enhance the expansion rate of B. xylophilus range more than those during the latent and pre-outbreak periods.  相似文献   

14.
The presence of alien invasive species has serious negative impact on endemic biodiversity, especially on native species that occupy the same niche in the ecosystem. To study the influence of the alien invasive species Bursaphelenchus xylophilus on its native sister species B. mucronatus, the two nematode species were mix-cultured in a fungal mat and mix-inoculated into a susceptible host. By comparing the propagation parameters of both species under competitive and noncompetitive conditions it was shown that the propagation level of B. xylophilus was clearly higher than that of B. mucronatus under laboratory culture. Furthermore, the propagation capacity of B. xylophilus under competitive conditions was much higher than that under noncompetitive conditions, both in laboratory culture and with host inoculation. Bursaphelenchus xylophilus also excluded B. mucronatus when the two species were cultured as a mixture for a longer time. The relative abundance ratios of the two species in natural pinewoods were also determined by random sampling of dying pine trees from regions with different invasion histories. It was noted that with an increase in invasion years the distribution frequency of B. xylophilus increased while that of B. mucronatus decreased. Experimental tests verified our hypothesis that because of its high fecundity and strong competitive ability, the invasive species B. xylophilus out-competed the native species B. mucronatus and displaced it in natural ecosystems. The successful invasion of B. xylophilus is attributed to competitive displacement, which may be one of the ecological invasive mechanisms.  相似文献   

15.
Pine wilt is caused by the nematode Bursaphelenchus xylophilus, which is transported to host trees in the trachea of Monochamus spp. (Coleoptera: Cerambycidae). The study of the relationship between the nematode and its beetle vectors has been hampered by the inability to estimate nematode presence or density within live beetles. This report describes a rapid method for estimating nematode load within live M. carolinensis and M. alternatus by visual examination of the atrium of the first abdominal spiracle. Visual estimates of nematode numbers correlated highly with actual nematode numbers. This method is a timesaving technique for determining relative numbers of B. xylophilus in pine wilt research.  相似文献   

16.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

17.
用于高灵敏可视化检测松材线虫的闭管等温扩增法   总被引:1,自引:0,他引:1  
建立了一种基于环介导等温核酸扩增技术(LAMP)的松材线虫高灵敏可视化闭管检测方法。针对松材线虫核糖体DNA的序列保守区域设计LAMP引物,通过优化LAMP体系中的Mg2+、甜菜碱浓度和反应温度等因素,建立了环介导等温扩增法;并结合蜡封反应管对产物进行检测,检测结果可直接通过肉眼观察SYBR Green I荧光显色进行判定。结果表明,本方法可检测到低至10拷贝/管的松材线虫核酸片段,可对单条线虫进行检测,并且具有很高的特异性,能区分检测松材线虫与拟松材线虫。由于整个反应恒温进行,无需热循环仪;闭管检测极大地降低了扩增产物交叉污染的风险;检测速度快,整个检测过程只需40 min,为松材线虫的现场快速筛检提供了一种简便、高灵敏、高特异的工具。  相似文献   

18.
Across insect genomes, the size of the cytochrome P450 monooxygenase (CYP) gene superfamily varies widely. CYPome size variation has been attributed to reciprocal adaptive radiations in insect detoxification genes in response to plant biosynthetic gene radiations driven by co‐evolution between herbivores and their chemically defended hostplants. Alternatively, variation in CYPome size may be due to random “birth‐and‐death” processes, whereby exponential increase via gene duplications is limited by random decay via gene death or transition via divergence. We examined CYPome diversification in the genomes of seven Lepidoptera species varying in host breadth from monophagous (Bombyx mori) to highly polyphagous (Amyelois transitella). CYPome size largely reflects the size of Clan 3, the clan associated with xenobiotic detoxification, and to some extent phylogenetic age. Consistently across genomes, families CYP6, CYP9 and CYP321 are most diverse and CYP6AB, CYP6AE, CYP6B, CYP9A and CYP9G are most diverse among subfamilies. Higher gene number in subfamilies is due to duplications occurring primarily after speciation and specialization (“P450 blooms”), and the genes are arranged in clusters, indicative of active duplicating loci. In the parsnip webworm, Depressaria pastinacella, gene expression levels in large subfamilies are high relative to smaller subfamilies. Functional and phylogenetic data suggest a correlation between highly dynamic loci (reflective of extensive gene duplication, functionalization and in some cases loss) and the ability of enzymes encoded by these genes to metabolize hostplant defences, consistent with an adaptive, nonrandom process driven by ecological interactions.  相似文献   

19.
20.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号