共查询到20条相似文献,搜索用时 15 毫秒
1.
Ypma RJ Bataille AM Stegeman A Koch G Wallinga J van Ballegooijen WM 《Proceedings. Biological sciences / The Royal Society》2012,279(1728):444-450
Knowledge on the transmission tree of an epidemic can provide valuable insights into disease dynamics. The transmission tree can be reconstructed by analysing either detailed epidemiological data (e.g. contact tracing) or, if sufficient genetic diversity accumulates over the course of the epidemic, genetic data of the pathogen. We present a likelihood-based framework to integrate these two data types, estimating probabilities of infection by taking weighted averages over the set of possible transmission trees. We test the approach by applying it to temporal, geographical and genetic data on the 241 poultry farms infected in an epidemic of avian influenza A (H7N7) in The Netherlands in 2003. We show that the combined approach estimates the transmission tree with higher correctness and resolution than analyses based on genetic or epidemiological data alone. Furthermore, the estimated tree reveals the relative infectiousness of farms of different types and sizes. 相似文献
2.
Repeated emergence of zoonotic viruses from bat reservoirs into human populations demands predictive approaches to preemptively identify virus‐carrying bat species. Here, we use machine learning to examine drivers of viral diversity in bats, determine whether those drivers depend on viral genome type, and predict undetected viral carriers. Our results indicate that bat species with longer life spans, broad geographic distributions in the eastern hemisphere, and large group sizes carry more viruses overall. Life span was a stronger predictor of deoxyribonucleic acid viral diversity, while group size and family were more important for predicting ribonucleic acid viruses, potentially reflecting broad differences in infection duration. Importantly, our models predict 54 bat species as likely carriers of zoonotic viruses, despite not currently being considered reservoirs. Mapping these predictions as a proportion of local bat diversity, we identify global regions where efforts to reduce disease spillover into humans by identifying viral carriers may be most productive. 相似文献
3.
Forests are living dynamic systems and these unique ecosystems are essential for life on earth. Forest fires are one of the major environmental concerns, economic, and social in the worldwide. The aim of current research is to identify general indicators influencing on forest fire and compare forest fire susceptibility maps based on the boosted regression tree (BRT), generalized additive model (GAM), and random forest (RF) data mining models in the Minudasht Township, Golestan Province, Iran. According to expert opinion and literature review, fifteen condition factors on forest fire have been selected in the study area. These are slope degree, slope aspect, elevation, topographic wetness index (TWI), topographic position index (TPI), plan curvature, wind effect, annual temperature and rainfall, soil texture, distance to roads, rivers, and villages, normalized difference vegetation index (NDVI), and land use. Forest fire locations were identified using MODIS images, historical records, and extensive field checking. 106 (≈70%) locations, out of 151 forest fires identified, were used for models building/training, while the remaining 45 (≈30%) cases were used for the models validation.BRT, GAM, and RF data mining models were used to distinguish between presence and absence of forest fires and its mapping. These algorithms were used to perform feature selection in order to reveal the variables that contribute more to forest fire occurrence. Finally, for validation of models, the area under the curve (AUC) for forest fire susceptibility maps was calculated. The validation of results showed that AUC for three mentioned models varies from 0.7279 to 0.8770 (AUCBRT = 80.84%, AUCGAM = 87.70%, and AUCRF = 72.79%,). Results indicated that the main drivers of forest fire occurrence were annual rainfall, distance to roads, and land use factors. The results can be applied to primary warning, fire suppression resource planning, and allocation work. 相似文献
4.
5.
James O. Lloyd-Smith 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1623)
A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a ‘vacated niche’, which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy. 相似文献
6.
Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus 总被引:1,自引:0,他引:1
Cottam EM Thébaud G Wadsworth J Gloster J Mansley L Paton DJ King DP Haydon DT 《Proceedings. Biological sciences / The Royal Society》2008,275(1637):887-895
Estimating detailed transmission trees that reflect the relationships between infected individuals or populations during a disease outbreak often provides valuable insights into both the nature of disease transmission and the overall dynamics of the underlying epidemiological process. These trees may be based on epidemiological data that relate to the timing of infection and infectiousness, or genetic data that show the genetic relatedness of pathogens isolated from infected individuals. Genetic data are becoming increasingly important in the estimation of transmission trees of viral pathogens due to their inherently high mutation rate. Here, we propose a maximum-likelihood approach that allows epidemiological and genetic data to be combined within the same analysis to infer probable transmission trees. We apply this approach to data from 20 farms infected during the 2001 UK foot-and-mouth disease outbreak, using complete viral genome sequences from each infected farm and information on when farms were first estimated to have developed clinical disease and when livestock on these farms were culled. Incorporating known infection links due to animal movement prior to imposition of the national movement ban results in the reduction of the number of trees from 41472 that are consistent with the genetic data to 1728, of which just 4 represent more than 95% of the total likelihood calculated using a model that accounts for the epidemiological data. These trees differ in several ways from those constructed prior to the availability of genetic data. 相似文献
7.
Seasonality and the dynamics of infectious diseases 总被引:8,自引:1,他引:7
Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host–pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite–host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions. 相似文献
8.
A significant goal of recent theoretical research on pathogen evolution has been to develop theory that bridges within- and between-host dynamics. The main approach used to date is one that nests within-host models of pathogen replication in models for the between-host spread of infectious diseases. Although this provides an elegant approach, it nevertheless suffers from some practical difficulties. In particular, the information required to satisfactorily model the mechanistic details of the within-host dynamics is not often available. Here, we present a theoretical approach that circumvents these difficulties by quantifying the relevant within-host factors in an empirically tractable way. The approach is closely related to quantitative genetic models for function-valued traits, and it also allows for the prediction of general characteristics of disease life history, including the timing of virulence, transmission, and host recovery. In a companion paper, we illustrate the approach by applying it to data from a model system of malaria. 相似文献
9.
Nardus Mollentze Louis H. Nel Sunny Townsend Kevin le Roux Katie Hampson Daniel T. Haydon Samuel Soubeyrand 《Proceedings. Biological sciences / The Royal Society》2014,281(1782)
We describe a statistical framework for reconstructing the sequence of transmission events between observed cases of an endemic infectious disease using genetic, temporal and spatial information. Previous approaches to reconstructing transmission trees have assumed all infections in the study area originated from a single introduction and that a large fraction of cases were observed. There are as yet no approaches appropriate for endemic situations in which a disease is already well established in a host population and in which there may be multiple origins of infection, or that can enumerate unobserved infections missing from the sample. Our proposed framework addresses these shortcomings, enabling reconstruction of partially observed transmission trees and estimating the number of cases missing from the sample. Analyses of simulated datasets show the method to be accurate in identifying direct transmissions, while introductions and transmissions via one or more unsampled intermediate cases could be identified at high to moderate levels of case detection. When applied to partial genome sequences of rabies virus sampled from an endemic region of South Africa, our method reveals several distinct transmission cycles with little contact between them, and direct transmission over long distances suggesting significant anthropogenic influence in the movement of infected dogs. 相似文献
10.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity. 相似文献
11.
1. Chytridiomycosis is an emerging infectious disease of amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis, which has been implicated recently in population declines and possible extinctions throughout the world. 2. The transmission rate of this pathogen was quantified in the mountain yellow-legged frog Rana muscosa through laboratory and field experiments, and a maximum likelihood approach was used to determine the form of the transmission function that was best supported by the experimental data. 3. The proportion of R. muscosa tadpole hosts that became infected increased with the number of previously infected R. muscosa tadpoles to which they were exposed, as would be expected in an infectious disease. 4. The laboratory experiment revealed some support for a transmission function in which the transmission rate levels off as the density of infected individuals increases. However, there was not enough power to distinguish between a frequency-dependent form and several other asymptotic forms of the transmission function. 5. The impacts of crowding and temperature on transmission were also investigated; however, neither of these factors significantly affected the transmission rate. 相似文献
12.
MATTHEW P. DAUGHERTY ARASH RASHED RODRIGO P. P. ALMEIDA THOMAS M. PERRING 《Ecological Entomology》2011,36(5):654-662
1. Epidemiological theory predicts that vector preference for hosts differing in infection status (i.e. healthy or infected) affects disease dynamics. 2. Numerous studies have documented strong vector preference for or discrimination against infected hosts. However, the significance of these behaviours for pathogen transmission and spread has been poorly described. 3. We conducted a series of choice assays to evaluate orientation preference, feeding preference, and movement rates of an important group of vectors, the sharpshooter leafhoppers, based on host infection status for the generalist plant pathogen, Xylella fastidiosa Wells et al. 4. Sharpshooters did not discriminate between healthy versus infected‐but‐asymptomatic grapevines, but they oriented preferentially to healthy grapevines more frequently than either symptomatic vines or those artificially coloured to mimic disease symptoms. 5. In a field trial three sharpshooter species showed different movement rates and preferences for feeding site, but all species exhibited similar and significant preference for healthy hosts. 6. Although there was no significant difference in acquisition efficiency among vector species, those individuals that spent more time on healthy hosts tended to be less likely to acquire the pathogen. 7. These results suggest that sharpshooters discriminate against infected grapevines, which are likely to be of poorer quality, with visual cues playing a role in host selection. Preference by these vectors may affect pathogen acquisition, which could affect disease spread in the field. 相似文献
13.
Deborah S. Bower Laura A. Brannelly Cait A. McDonald Rebecca J. Webb Sasha E. Greenspan Mathew Vickers Michael G. Gardner Matthew J. Greenlees 《Austral ecology》2019,44(3):433-448
A great diversity of parasites, from viruses and bacteria to a range of remarkable eukaryotic organisms, exploit reptile and amphibian hosts. Recent increases in the emergence of infectious disease have revealed the importance of understanding the effects of interactions between hosts and their parasites. Here we review the effects of parasite infection on a range of demographic, behavioural, genomic and physiological factors in reptile and amphibian species. Reviewing these parasite roles collectively, and prioritising areas for research, advances our ecological understanding and guides direction for conservation in a time of rapid species decline. Poorly resolved systems include Gymnophionan amphibians and Crocodilian hosts, in addition to viral and bacterial parasites. Future research should seek to understand processes enabling population recovery and examining synergistic interactions of parasites with fragmentation, climate change and other processes that threaten species persistence. 相似文献
14.
Bo Cao Chengke Bai Kunyi Wu Ting La Yiyang Su Lingyu Che Meng Zhang Yumeng Lu Pufan Gao Jingjing Yang Ying Xue Guishuang Li 《Global Change Biology》2023,29(13):3723-3746
Climate has critical roles in the origin, pathogenesis and transmission of infectious zoonotic diseases. However, large-scale epidemiologic trend and specific response pattern of zoonotic diseases under future climate scenarios are poorly understood. Here, we projected the distribution shifts of transmission risks of main zoonotic diseases under climate change in China. First, we shaped the global habitat distribution of main host animals for three representative zoonotic diseases (2, 6, and 12 hosts for dengue, hemorrhagic fever, and plague, respectively) with 253,049 occurrence records using maximum entropy (Maxent) modeling. Meanwhile, we predicted the risk distribution of the above three diseases with 197,098 disease incidence records from 2004 to 2017 in China using an integrated Maxent modeling approach. The comparative analysis showed that there exist highly coincident niche distributions between habitat distribution of hosts and risk distribution of diseases, indicating that the integrated Maxent modeling is accurate and effective for predicting the potential risk of zoonotic diseases. On this basis, we further projected the current and future transmission risks of 11 main zoonotic diseases under four representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in 2050 and 2070 in China using the above integrated Maxent modeling with 1,001,416 disease incidence records. We found that Central China, Southeast China, and South China are concentrated regions with high transmission risks for main zoonotic diseases. More specifically, zoonotic diseases had diverse shift patterns of transmission risks including increase, decrease, and unstable. Further correlation analysis indicated that these patterns of shifts were highly correlated with global warming and precipitation increase. Our results revealed how specific zoonotic diseases respond in a changing climate, thereby calling for effective administration and prevention strategies. Furthermore, these results will shed light on guiding future epidemiologic prediction of emerging infectious diseases under global climate change. 相似文献
15.
Ellen E. Brandell Daniel J. Becker Laura Sampson Kristian M. Forbes 《Ecology and evolution》2021,11(24):17581
Micro‐ and macroparasites are a leading cause of mortality for humans, animals, and plants, and there is great need to understand their origins, transmission dynamics, and impacts. Disease ecology formed as an interdisciplinary field in the 1970s to fill this need and has recently rapidly grown in size and influence. Because interdisciplinary fields integrate diverse scientific expertise and training experiences, understanding their composition and research priorities is often difficult. Here, for the first time, we quantify the composition and educational experiences of a subset of disease ecology practitioners and identify topical trends in published research. We combined a large survey of self‐declared disease ecologists with a literature synthesis involving machine‐learning topic detection of over 18,500 disease ecology research articles. The number of graduate degrees earned by disease ecology practitioners has grown dramatically since the early 2000s. Similar to other science fields, we show that practitioners in disease ecology have diversified in the last decade in terms of gender identity and institution, with weaker diversification in race and ethnicity. Topic detection analysis revealed how the frequency of publications on certain topics has declined (e.g., HIV, serology), increased (e.g., the dilution effect, infectious disease in bats), remained relatively common (e.g., malaria ecology, influenza, vaccine research and development), or have consistently remained relatively infrequent (e.g., theoretical models, field experiments). Other topics, such as climate change, superspreading, emerging infectious diseases, and network analyses, have recently come to prominence. This study helps identify the major themes of disease ecology and demonstrates how publication frequency corresponds to emergent health and environmental threats. More broadly, our approach provides a framework to examine the composition and publication trends of other major research fields that cross traditional disciplinary boundaries. 相似文献
16.
随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例 总被引:13,自引:0,他引:13
通常来讲,生态学者对于解释生态关系、描述格局和过程、进行空间或时间预测比较感兴趣。这些工作可以通过模拟输出值(响应)与一些特征值(即解释变量)的关系来实现。然而,生态数据模拟遇到了挑战,这是因为响应变量和预测变量可能是连续变量或离散变量。需要解释的生态关系通常是非线性的,并且解释变量之间具有复杂的相互作用关系。响应变量和解释变量存在缺失值并不是不常有的现象,奇异值也经常出现在生态数据中。此外,生态学者通常希望生态模型即要易于建立又易要于解释。通常是利用多种统计方法来分析处理各种各样情景中出现的独特的生态问题,这些模型包括(多元)逻辑回归、线性模型、生存模型、方差分析等等。随机森林是一个可以处理所有这些问题的有效方法。随机森林可以用来做分类、聚类、回归和生存分析、评估变量的重要性、检测数据中的奇异值、对缺失数据进行插补等。鉴于随机森林本身在算法上的优势,将就随机森林在生态学中的应用进行总结,对建模过程进行概述,并以云南松分布模拟研究为例,对其主要功能特点进行案例展示。通过对随机森林的一般术语、概念和建模思想进行介绍,有利于读者掌握本方法的应用本质,可以预见随机森林在生态学研究中将得到更多的应用和发展。 相似文献
17.
18.
Most contributions in the field of mathematical modelling of childhood infectious diseases transmission dynamics have focused on stationary or exponentially growing populations. In this paper an epidemiological model with realistic demography is used to investigate the impact of the non-equilibrium conditions typical of the transition to sustained below replacement fertility (BRF) recently observed in a number of western countries, upon the transmission dynamics of measles. The results depend on the manner we model the relation between the (changing) age distribution of the population and contacts. Under some circumstances the transitional ageing phase typical of BRF populations might complexly interact with epidemiological variables leading to (i) a substantial reduction in the amount of vaccination effort required for eliminating the disease; (ii) a significant magnification of the perverse impact of vaccination in terms of the burden of severe age related morbidity. 相似文献
19.
Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests 总被引:1,自引:0,他引:1
Muller-Landau HC Condit RS Chave J Thomas SC Bohlman SA Bunyavejchewin S Davies S Foster R Gunatilleke S Gunatilleke N Harms KE Hart T Hubbell SP Itoh A Kassim AR LaFrankie JV Lee HS Losos E Makana JR Ohkubo T Sukumar R Sun IF Nur Supardi MN Tan S Thompson J Valencia R Muñoz GV Wills C Yamakura T Chuyong G Dattaraja HS Esufali S Hall P Hernandez C Kenfack D Kiratiprayoon S Suresh HS Thomas D Vallejo MI Ashton P 《Ecology letters》2006,9(5):575-588
The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests. 相似文献
20.
免疫细胞浸润对癌症的诊断与预后有着重要意义。文中收集TCGA数据库已收录的非小细胞肺癌肿瘤与正常组织基因表达数据,利用CIBERSORT工具得到22种免疫细胞占比来评估免疫细胞浸润情况。以22种免疫细胞占比为特征,用机器学习方法构建了非小细胞肺癌肿瘤与正常组织的分类模型,其中随机森林方法构建的模型分类效果AUC=0.987、敏感性0.98及特异性0.84。并且用随机森林方法构建的肺腺癌和肺鳞癌肿瘤组织分类模型效果AUC=0.827、敏感性0.75及特异性0.77。用LASSO回归筛选22种免疫细胞特征,保留8种强相关特征组成的免疫细胞评分结合临床特征构建了非小细胞肺癌预后模型。经评估及验证,预后模型C-index=0.71并且3年和5年的校准曲线拟合良好,可以对预后风险度进行准确预测。本研究基于免疫细胞浸润所构建的分类模型与预后模型,旨在对非小细胞肺癌的诊断与预后研究提供新的策略。 相似文献