共查询到20条相似文献,搜索用时 32 毫秒
1.
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control. 相似文献
2.
Konstans Wells Serge Morand Maya Wardeh Matthew Baylis 《Global Ecology and Biogeography》2020,29(3):470-481
3.
Fuentes A Kalchik S Gettler L Kwiatt A Konecki M Jones-Engel L 《American journal of primatology》2008,70(9):879-883
Previous studies have noted substantial human-macaque interactions involving physical contact in Bali, Indonesia; Gibraltar; and Mt. Emei, China [Fuentes, American Journal of Primatology 68:880-896, 2006; Zhao, Tibetan macaques, visitors, and local people at Mt. Emei: problems and countermeasures. In: Paterson and Wallis, editor. Commensalism and conflict: the human-primate interface. Norman, OK: American Society of Primatologists. p 376-399, 2005]. The aim of this study was to conduct preliminary observations in order to begin to characterize interaction patterns between humans and long-tailed macaques (Macaca fascicularis) in Singapore. Unlike Bali, Gibraltar, and Mt. Emei, Singapore occasionally enforces fines and penalties and engages in an education campaign in an effort to minimize physical contact between humans and macaques. Observers stationed at two sites in Singapore conducted 92 5 hr of observation that included 730 human-macaque interactions over 16 days. Data recorded include interaction characteristics, demographic and behavioral variables, presence of feeding by humans, and presence of automobiles. Although feeding by humans was relatively infrequent overall, it generally occurred most often by individuals in cars and when human children were present. Data analysis suggests that interactions involving physical contact between macaques and humans are rare in Singapore, in contrast to the findings from Bali, Gibraltar, and Mt. Emei. This low level of physical contact suggests a low risk of macaque-human pathogen transmission in Singapore. 相似文献
4.
随机森林模型在分类与回归分析中的应用 总被引:25,自引:0,他引:25
随机森林(random forest)模型是由Breiman和Cutler在2001年提出的一种基于分类树的算法。它通过对大量分类树的汇总提高了模型的预测精度,是取代神经网络等传统机器学习方法的新的模型。随机森林的运算速度很快,在处理大数据时表现优异。随机森林不需要顾虑一般回归分析面临的多元共线性的问题,不用做变量选择。现有的随机森林软件包给出了所有变量的重要性。另外,随机森林便于计算变量的非线性作用,而且可以体现变量间的交互作用(interaction)。它对离群值也不敏感。本文通过3个案例,分别介绍了随机森林在昆虫种类的判别分析、有无数据的分析(取代逻辑斯蒂回归)和回归分析上的应用。案例的数据格式和R语言代码可为研究随机森林在分类与回归分析中的应用提供参考。 相似文献
5.
Repeated emergence of zoonotic viruses from bat reservoirs into human populations demands predictive approaches to preemptively identify virus‐carrying bat species. Here, we use machine learning to examine drivers of viral diversity in bats, determine whether those drivers depend on viral genome type, and predict undetected viral carriers. Our results indicate that bat species with longer life spans, broad geographic distributions in the eastern hemisphere, and large group sizes carry more viruses overall. Life span was a stronger predictor of deoxyribonucleic acid viral diversity, while group size and family were more important for predicting ribonucleic acid viruses, potentially reflecting broad differences in infection duration. Importantly, our models predict 54 bat species as likely carriers of zoonotic viruses, despite not currently being considered reservoirs. Mapping these predictions as a proportion of local bat diversity, we identify global regions where efforts to reduce disease spillover into humans by identifying viral carriers may be most productive. 相似文献
6.
Silviu O. Petrovan David C. Aldridge Harriet Bartlett Andrew J. Bladon Hollie Booth Steven Broad Donald M. Broom Neil D. Burgess Sarah Cleaveland Andrew A. Cunningham Maurizio Ferri Amy Hinsley Fangyuan Hua Alice C. Hughes Kate Jones Moira Kelly George Mayes Milorad Radakovic Chinedu A. Ugwu Nasir Uddin Diogo Veríssimo Christian Walzer Thomas B. White James L. Wood William J. Sutherland 《Biological reviews of the Cambridge Philosophical Society》2021,96(6):2694-2715
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes. 相似文献
7.
Richard S. Ostfeld Dustin Brisson Kelly Oggenfuss Jill Devine Michael Z. Levy Felicia Keesing 《Ecology and evolution》2018,8(8):4074-4083
Most emerging infectious diseases of humans are transmitted to humans from other animals. The transmission of these “zoonotic” pathogens is affected by the abundance and behavior of their wildlife hosts. However, the effects of infection with zoonotic pathogens on behavior of wildlife hosts, particularly those that might propagate through ecological communities, are not well understood. Borrelia burgdorferi is a bacterium that causes Lyme disease, the most common vector‐borne disease in the USA and Europe. In its North American range, the pathogen is most frequently transmitted among hosts through the bite of infected blacklegged ticks (Ixodes scapularis). Using sham and true vaccines, we experimentally manipulated infection load with this zoonotic pathogen in its most competent wildlife reservoir host, the white‐footed mouse, Peromyscus leucopus, and quantified the effects of infection on mouse foraging behavior, as well as levels of mouse infestation with ticks. Mice treated with the true vaccine had 20% fewer larval blacklegged ticks infesting them compared to mice treated with the sham vaccine, a significant difference. We observed a nonsignificant trend for mice treated with the true vaccine to be more likely to visit experimental foraging trays (20%–30% effect size) and to prey on gypsy moth pupae (5%–20% effect size) compared to mice treated with the sham vaccine. We observed no difference between mice on true‐ versus sham‐vaccinated grids in risk‐averse foraging. Infection with this zoonotic pathogen appears to elicit behavioral changes that might reduce self‐grooming, but other behaviors were affected subtly or not at all. High titers of B. burgdorferi in mice could elicit a self‐reinforcing feedback loop in which reduced grooming increases tick burdens and hence exposure to tick‐borne pathogens. 相似文献
8.
植物病原菌在森林动态中的作用 总被引:4,自引:0,他引:4
植物病原菌作为森林生态系统的重要组成成分及调控因子之一,在森林动态中扮演着重要的角色。植物病原菌通过侵染过程导致寄主植物的幼苗及成熟个体死亡、成熟个体的种子量降低或不实,或造成植物个体或群落中不同物种不同程度的病害,影响它们之间的营养竞争,从而导致群落结构、物种及个体数量的变化。感染散布前、后的种子和土壤种子库中的种子,以及由种子萌发产生的幼苗,它们的存活率降低,进而影响森林中的种子散布、幼苗更新与增补格局。在天然林中,先锋树种比顶极树种对病原菌更敏感,群落演替的早期阶段对病原菌比较敏感。植物病原菌主要通过密度依赖机制造成森林树种不同的死亡格局,从而参与森林的动态过程。 相似文献
9.
The effects that microorganisms (bacteria, viruses and fungi) have on their hosts remain unexplored for most vulture species. This is especially relevant for vultures, as their diet consists of carcasses in various stages of decomposition, which are breeding grounds for potentially pathogenic microorganisms. Here we review current knowledge of bacterial, viral and mycotic microorganisms present in wild vultures. We consider their potential to cause disease in vultures and whether this poses any population-level threats. Furthermore, we address the question of whether vultures may act as disease spreaders or mitigators. We found 76 articles concerning bacterial, viral and mycotic microorganisms present in 13 vulture species, 57 evaluating bacteria, 13 evaluating viruses and six evaluating mycotic microorganisms. These studies come from all continents where vultures are present, but mainly from Europe and North America, and the most studied species was the Griffon Vulture Gyps fulvus. We found that vultures are colonized by zoonotic pathogens, and even host-specific human pathogens. Some recorded bacteria showed multi-antibiotic resistance, especially those that can be associated with anthropogenic food subsides such as supplementary feeding stations. We found evidence that vulture health can be affected by some microorganisms, producing a wide array of clinical alterations that have the potential to influence mortality risk and fitness. We did not find clear scientific evidence that vultures play an epidemiological role spreading microorganisms to humans and other species. However, there is evidence that vultures could prevent the spread of infectious diseases through their removal of decomposing organic material. The evaluation of vulture exposure to microorganisms is of fundamental importance to design better conservation policies for this threatened group, which may serve a key role as ecosystem cleaners. 相似文献
10.
11.
George L. W. Perry Janet M. Wilmshurst Matt S. McGlone Aaron Napier 《Global Ecology and Biogeography》2012,21(10):1029-1041
Aim Despite small and transient populations, early Māori transformed large areas of New Zealand's forest landscapes. We sought to isolate the biophysical predictors that explain forest loss in the pre‐historic (i.e. pre‐European) period in New Zealand. Location New Zealand. Methods We used resampled boosted regression trees to isolate the key predictors of forest loss from a suite of 19 topographic, climatic, soil‐related and archaeological predictors at a 1‐km spatial resolution across New Zealand. Results The key predictors of fire‐driven forest loss during New Zealand's pre‐history relate to moisture and elevation gradients, with sites characterized by low moisture levels and gentle slopes being most vulnerable. Proxies for human activity were important in the North Island, where Māori population densities were higher, but not the South Island. The predicted pattern of forest loss and its relationship with biophysical variables suggest that early Māori neither deliberately protected fire‐prone regions nor systematically burnt less fire‐prone ones. Main conclusions Before Māori settlement of New Zealand fire was naturally rare, despite biophysical conditions being conducive to fire spread. The introduction of an ignition source by humans made widespread forest loss inevitable, even in the absence of sustained and deliberate use of fire. Rapid forest loss at the time of human settlement is recurrent across eastern Polynesia, so understanding this dynamic in New Zealand has implications for the region as a whole. 相似文献
12.
目的: 筛选高血压性心脏病(HHD)的影响因素,建立HHD的预测模型,为HHD的发生提供预警。方法: 选取中国重庆市某医科院校数据研究院平台2016年1月1日至2019年12月31日主要诊断为高血压性心脏病和高血压患者。通过单因素分析、多因素分析筛选HHD的影响因素,采用R语言分别构建Logistics模型、随机森林(RF)模型和极限梯度上升(XGBoost)模型。结果: 单因素分析筛选出60项差异指标,多因素分析筛选出18项差异指标(P<0.05)。Logistics模型、RF模型、XGBoost模型曲线下面积(AUC)分别为0.979、0.983和0.990。结论: 本文建立的3种HHD预测模型结果稳定,其中XGBoost模型对于HHD的发生具有良好的诊断效应。 相似文献
13.
J. R. Leathwick J. Elith W. L. Chadderton D. Rowe T. Hastie 《Journal of Biogeography》2008,35(8):1481-1497
Aim To examine the relationship between diadromy and dispersal ability in New Zealand’s freshwater fish fauna, and how this affects the current environmental and geographic distributions of both diadromous and non‐diadromous species. Location New Zealand. Methods Capture data for 15 diadromous and 15 non‐diadromous fish species from 13,369 sites throughout New Zealand were analysed to establish features of their geographic ranges. Statistical models were used to determine the main environmental correlates of species’ distributions, and to establish the environmental conditions preferred by each species. Environmental predictors, chosen for their functional relevance, were derived from an extensive GIS database describing New Zealand’s river and stream network. Results In terms of geography, most diadromous species occur in a scattered fashion throughout extensive geographic ranges, and occupy large numbers of catchments of widely varying size. By contrast, most non‐diadromous species show relatively high levels of occupancy of smaller geographic ranges, and most are restricted to a few large catchments, particularly in the eastern South Island. In terms of environment, there is marked separation of diadromous from non‐diadromous species, with diadromous species generally caught most frequently in low‐gradient coastal rivers and streams with warm, maritime climates. With a few notable exceptions, most diadromous species have lower occurrence in river segments that are located above obstacles to upstream migration. Non‐diadromous species are usually caught in inland rivers and streams with cool, strongly seasonal climates, typified by a low frequency of high‐intensity rainfall events. Main conclusions We interpret the contrasting biogeographies of New Zealand’s diadromous and non‐diadromous species as reflecting interaction between their marked differences in dispersal ability and a landscape that is subject to recurrent, often large‐scale, natural disturbance. While both groups are likely to be equally susceptible to local, disturbance‐driven extinction, the much greater dispersal ability of diadromous species has allowed them to persist over wide geographic ranges. By contrast, the distributions of most non‐diadromous species are concentrated in a few large catchments, mostly in regions where less intense natural disturbance regimes are likely to have favoured their survival. 相似文献
14.
Forests are living dynamic systems and these unique ecosystems are essential for life on earth. Forest fires are one of the major environmental concerns, economic, and social in the worldwide. The aim of current research is to identify general indicators influencing on forest fire and compare forest fire susceptibility maps based on the boosted regression tree (BRT), generalized additive model (GAM), and random forest (RF) data mining models in the Minudasht Township, Golestan Province, Iran. According to expert opinion and literature review, fifteen condition factors on forest fire have been selected in the study area. These are slope degree, slope aspect, elevation, topographic wetness index (TWI), topographic position index (TPI), plan curvature, wind effect, annual temperature and rainfall, soil texture, distance to roads, rivers, and villages, normalized difference vegetation index (NDVI), and land use. Forest fire locations were identified using MODIS images, historical records, and extensive field checking. 106 (≈70%) locations, out of 151 forest fires identified, were used for models building/training, while the remaining 45 (≈30%) cases were used for the models validation.BRT, GAM, and RF data mining models were used to distinguish between presence and absence of forest fires and its mapping. These algorithms were used to perform feature selection in order to reveal the variables that contribute more to forest fire occurrence. Finally, for validation of models, the area under the curve (AUC) for forest fire susceptibility maps was calculated. The validation of results showed that AUC for three mentioned models varies from 0.7279 to 0.8770 (AUCBRT = 80.84%, AUCGAM = 87.70%, and AUCRF = 72.79%,). Results indicated that the main drivers of forest fire occurrence were annual rainfall, distance to roads, and land use factors. The results can be applied to primary warning, fire suppression resource planning, and allocation work. 相似文献
15.
Does the structure and connectivity of host populations influence the dynamics and evolution of their pathogens? This topical question is the essence of research investigating the ecology of a Pteropus fruit bat and its zoonotic Nipah virus (NiV) published by Olival et al. in this issue of Molecular Ecology. Questioned less overtly, but nonetheless implicit to the study, is “what are the mechanisms underpinning intraspecific host–pathogen congruence (IHPC) of genetic structure?”. Olival et al. investigated the phylogeographical structure of Pteropus medius and NiV isolates across Bangladesh, from areas inside and outside of the Nipah belt—an area where most human spillover events occur. A high degree of host panmixia was discovered, with some population differentiation east of the Nipah belt. NiV genetic structure was congruent with the host. The authors attributed the panmixia and structuring, respectively, to (a) the highly vagile nature of P. medius, and (b) possible differences between bioregions within and outside the Nipah belt. Other potential explanatory mechanisms were acknowledged, including hybridization and transmission mode. This study makes a valuable contribution to a growing body of literature examining IHPC. This has implications not only for pathogen spillover to humans and domestic animals, but more generally for thinking about the mechanisms that underlie patterns of host and pathogen genetic associations. 相似文献
16.
James O. Lloyd-Smith 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1623)
A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a ‘vacated niche’, which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy. 相似文献
17.
Soil organic carbon (SOC) plays an important role in soil fertility and carbon sequestration, and a better understanding of the spatial patterns of SOC is essential for soil resource management. In this study, we used boosted regression tree (BRT) and random forest (RF) models to map the distribution of topsoil organic carbon content at the northeastern edge of the Tibetan Plateau in China. A set of 105 soil samples and 12 environmental variables (including topography, climate and vegetation) were analyzed. The performance of the models was evaluated using a 10-fold cross-validation procedure. Maps of the mean values and standard deviations of SOC were generated to illustrate model variability and uncertainty. The results indicate that the BRT and RF models exhibited very similar performance and yielded similar predicted distributions of SOC. The two models explained approximately 70% of the total SOC variability. The BRT and RF models robustly predicted the SOC at low observed SOC values, whereas they underestimated high observed SOC values. This underestimation may have been caused by biased distributions of soil samples in the SOC space. Vegetation-related variables were assigned the highest importance in both models, followed by climate and topography. Both models produced spatial distribution maps of SOC that were closely related to vegetation cover. The SOC content predicted by the BRT model was clearly higher than that of the RF model in areas with greater vegetation cover because the contributions of vegetation-related variables in the two models (65% and 43%, respectively) differed significantly. The predicted SOC content increased from the northwestern to the southeastern part of the study area, average values produced by the BRT and RF models were 27.3 g kg−1 and 26.6 g kg−1, respectively. We conclude that the BRT and RF methods should be calibrated and compared to obtain the best prediction of SOC spatial distribution in similar regions. In addition, vegetation variables, including those obtained from remote sensing imagery, should be taken as the main environmental indicators and explicitly included when generating SOC maps in Alpine environments. 相似文献
18.
《Basic and Applied Ecology》2014,15(1):75-84
Population dynamics of fluctuating and cyclic rodent populations can be impacted by particular weather parameters. In temperate areas there are interrelations between different weather parameters, which make identification difficult. However, this is necessary because small rodents are relevant for both the food web and crop damage especially in the face of climate change. We used both, boosted regression tree and classification and regression tree methods to identify weather conditions correlating with the active burrow index (ABI) of common voles (Microtus arvalis) from 1974 to 1998 in the high outbreak risk area of Central Germany. Highest ABI occurred in perennial crops in fall with a maximum of more than 2000 active burrows per 1000 m2. Boosted regression tree analysis showed that between 12 and 20 weather parameters could have a relative influence on vole ABIs ranging from 2% to 19%. Classification and regression tree analysis highlighted that the number of days with snow cover in December and March, rainfall amount in spring and maximum temperature in October seem to be key indicators for ABIs in the following year in spring. Monthly maximum temperatures of February to June and the amount of precipitation in April and July were correlated to ABIs in fall. Quantitative validation showed an agreement of ABI distribution on regional scale >85%. This represents the first study to identify complex weather conditions including single parameter thresholds correlated with common vole abundance in a temperate area. The results have the potential to aid the development of predictive models for small rodent dynamics and they inspire further detailed search for regulative mechanisms of small mammal dynamics. 相似文献
19.
森林生物量是评价全球碳氧平衡、气候变化的重要指标。目前已有基于星载激光雷达数据的全球森林生物量产品,但空间分辨率较低,不能很好地满足小区域森林调查和动态监测的需要。针对这一现状,以美国马里兰州两个森林分布状况不同的区域为研究区,基于CMS(Carbon Monitoring System)30 m分辨率和GEOCARBON 1 km分辨率森林地上生物量产品以及TM等数据源,通过升尺度模拟低分辨率生物量数据和直接使用低分辨率产品两种方式,分别尝试建立了多光谱地表参数和低分辨率森林地上生物量之间的统计关系,以此作为降尺度模型实现了森林地上生物量空间分辨率从1 km到30 m的转换,并对降尺度结果进行精度评价和误差分析。结果表明:模拟数据降尺度后的30 m分辨率森林地上生物量空间分布和CMS森林地上生物量分布状况大致相同,RMSE=59.2—65.5 Mg/hm~2,相关系数约为0.7;其降尺度结果优于GEOCARBON产品直接降尺度结果RMSE=75.3—79.9 Mg/hm~2;相较于线性模型,非线性模型能更好地呈现森林地上生物量和地表参数间的关系;总体上,降尺度生物量呈现高值区低估,低值区高估的现象。 相似文献
20.
Most emerging pathogens of humans can infect multiple host species (Woolhouse & Gowtage‐Sequeria, 2005). This simple fact has motivated multiple large‐scale, comparative analyses of the drivers of pathogen sharing and zoonotic pathogen richness among hosts as well as the factors determining the zoonotic potential of pathogens themselves. However, most of this work focuses on viruses, limiting a broader understanding of how host range varies within and between pathogen groups. In this issue of Molecular Ecology, Shaw et al. (2020) compile a comprehensive data set of host–pathogen associations across viruses and bacteria and test whether previous patterns observed in the former occur in the latter. They find most viruses and bacteria are specialists, and viruses are more likely to be generalists; however, generalist bacteria encompass multiple host orders, whereas viral sharing occurs more within host orders. Lastly, the authors demonstrate that many factors previously identified as predictors of zoonotic richness for viruses occur for bacteria and that host phylogenetic similarity is a primary determinant of cross‐species transmission. However, pathogen sharing with humans was more common and more weakly related to phylogenetic distance to Homo sapiens for bacteria compared to viruses, suggesting the former could pose greater spillover risks across host orders. This work represents a key advance in our understanding of host specificity and pathogen sharing beyond viruses. 相似文献