首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

2.
3.
4.
5.
Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola‐meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome‐wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome‐wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes.  相似文献   

6.
Social insect colonies represent distinct units of selection. Most individuals evolve by kin selection and forgo individual reproduction. Instead, they display altruistic food sharing, nest maintenance and self‐sacrificial colony defence. Recently, altruistic self‐removal of diseased worker ants from their colony was described as another important kin‐selected behaviour. Here, we report corroborating experimental evidence from honey bee foragers and theoretical analyses. We challenged honey bee foragers with prolonged CO2 narcosis or by feeding with the cytostatic drug hydroxyurea. Both treatments resulted in increased mortality but also caused the surviving foragers to abandon their social function and remove themselves from their colony, resulting in altruistic suicide. A simple model suggests that altruistic self‐removal by sick social insect workers to prevent disease transmission is expected under most biologically plausible conditions. The combined theoretical and empirical support for altruistic self‐removal suggests that it may be another important kin‐selected behaviour and a potentially widespread mechanism of social immunity.  相似文献   

7.
Sexual dimorphisms are primary regulated by sex‐biased gene expression. In the present study, using real‐time polymerase chain reaction, we determined the expression profiles of nine genes associated with development, metabolism, stress, and defense throughout adulthood of the Indian meal moth Plodia interpunctella, a global pest of stored food products. Most genes were differentially expressed in a sex‐biased manner during the adult lifespan of the moth. Expression of the heat shock protein genes hsp25 and hsp90 and the antioxidant gene thioredoxin peroxidase (Tpx) was highly female biased, whereas the expression of a gene related to host development (ecdysone receptor [EcR]) and two genes associated with immunity (β‐glycan recognition protein [βgrp] and prophenoloxidase [ProPO]) was male biased. In contrast, the expression of hsp70, glucose‐regulated protein 78 (grp78) and ultraspiracle (USP) was not sex biased. The results of the present study provide important insights into the role of sex‐biased genes in the physiology and behavior of P. interpunctella.  相似文献   

8.
9.
The social organization of cooperatively breeding species is extremely variable, with diverse social group composition and patterns of relatedness. Species that exhibit alternative routes to helping within the same population are potentially useful systems to investigate the causes and fitness consequences of diverse evolutionary pathways to cooperative behaviour. In this study, we use microsatellite markers and field observations to describe helping behaviour and patterns of relatedness in the unusual cooperative breeding system of the rifleman Acanthisitta chloris. First, we show that rifleman helpers consist of a remarkably diverse demographic, including males and females, who may be adult or juvenile, failed breeders or nonbreeders, or even successful breeders that simultaneously feed their own brood. Adult helpers mostly helped at first‐brood nests, while first‐brood juveniles assisted their parents at second broods. Second, we show that rifleman pairs are strictly sexually monogamous, and helpers did not gain any current reproductive success through helping. Third, genotyping showed that contrary to previous assumptions, helpers were closely related to the recipients of their care and preferentially directed care towards relatives over contemporaneous nests of nonrelatives. Finally, we show that variation in helper provisioning effort was attributed to age: juvenile helpers provisioned less than adults and were less responsive to the demands of a growing brood. Overall, our results show that the diverse routes to helping in this unusual species are driven by the common theme of kinship between helper and recipients, resulting in a previously underestimated potential for helpers to gain indirect fitness benefits.  相似文献   

10.
11.
Kinship shapes female social networks in many primate populations in which females remain in their natal group to breed. In contrast, it is unclear to which extent kinship affects the social networks in populations with female dispersal. Female Colobus vellerosus show routine facultative dispersal (i.e., some females remain philopatric and others disperse). This dispersal pattern allowed us to evaluate if facultative dispersed females form social networks shaped by an attraction to kin, to social partners with a high resource holding potential, or to similar social partners in terms of maturational stage, dominance rank, and residency status. During 2008 and 2009, we collected behavioral data via focal and ad libitum sampling of 61 females residing in eight groups at Boabeng‐Fiema, Ghana. We determined kinship based on partial pedigrees and genotypes at 17 short tandem repeat loci. Kinship influenced coalition and affiliation networks in three groups consisting of long‐term resident females with access to a relatively high number of female kin. In contrast, similar residency status was more important than kinship in structuring the affiliation network in one of two groups that contained recent female immigrants. In populations with female dispersal, the occurrence of kin structured social networks may not only depend on the kin composition of groups but also on how long the female kin have resided together. We found no consistent support for females biasing affiliation toward partners with high resource holding potential, possibly due to low levels of contest competition and small inter‐individual differences in resource holding potential. Am J Phys Anthropol 153:365–376, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth. Cattle with mutations that inactivate myostatin exhibit a remarkable increase in mass of skeletal muscle called double muscling that is accompanied by an equally remarkable decrease in carcass fat. Although a mouse knockout model has been created which results in mice with a 200% increase in skeletal muscle mass, molecular mechanisms whereby myostatin regulates skeletal muscle and fat mass are not fully understood. Using suppressive subtractive hybridization, genes that were differentially expressed in double-muscled vs. normal-muscled cattle embryos were identified. Genetic variation at other loci was minimized by using embryonic samples collected from related Piedmontese x Angus dams or Belgian Blue x Hereford dams bred to a single sire of the same breed composition. Embryos were collected at 31-33 days of gestation, which is 2-4 days after high-level expression of myostatin in the developing bovine embryo. The suppressive subtraction resulted in 30 clones that were potentially differentially expressed, 19 of which were confirmed by macroarray analysis. Several of these genes have biological functions that suggest that they are directly involved in myostatin's regulation of skeletal muscle development. Furthermore, several of these genes map to quantitative trait loci known to interact with variation in the myostatin gene.  相似文献   

13.
14.
Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter‐individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR‐2. As expected, foragers showed large inter‐individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co‐opting behavioural modules involved in food search and foraging in solitary insects.  相似文献   

15.
16.
17.
18.
19.
Summary An expression vector was constructed containing the entire bovine papilloma virus (BPV-1) genome and part of the a-actin gene of Xenopus laevis cloned in the antisense orientation into the neomycin resistance gene under the control of the herpes simplex virus (HSV) thymidine kinase (TK) promoter. When this vector is microinjected into X. laevis embryos it replicates extrachromosomally, at least up to the tadpole stage, and a fusion RNA is synthesized after the mid blastula transition (MBT). The expression of the antisense gene results in a morphological abnormality of somites demonstrating that antisense RNA generated by an episomal replicating expression vector can inhibit the expression of a selected gene during early embryogenesis of X. laevis.  相似文献   

20.
Gene expression changes potentially play an important role in adaptive evolution under human‐induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries‐induced evolution, and thus, the relevant underlying molecular‐level effects remain elusive. We use wild‐origin zebrafish (Danio rerio) as a model for harvest‐induced evolution. We experimentally demonstrate broad‐scale gene expression changes induced by just five generations of size‐selective harvesting, and limited genetic convergence following the cessation of harvesting. We also demonstrate significant allele frequency changes in genes that were differentially expressed after five generations of size‐selective harvesting. We further show that nine generations of captive breeding induced substantial gene expression changes in control stocks likely due to inadvertent selection in the captive environment. The large extent and rapid pace of the gene expression changes caused by both harvest‐induced selection and captive breeding emphasizes the need for evolutionary enlightened management towards sustainable fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号