首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea''s pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs.  相似文献   

2.
Many plants are grown outside their natural ranges. Plantings adjacent to native ranges provide an opportunity to monitor community assembly among associated insects and their parasitoids in novel environments, to determine whether gradients in species richness emerge and to examine their consequences for host plant reproductive success. We recorded the fig wasps (Chalcidoidea) associated with a single plant resource (ovules of Ficus microcarpa) along a 1200 km transect in southwest China that extended for 1000 km beyond the tree's natural northern range margin. The fig wasps included the tree's agaonid pollinator and other species that feed on the ovules or are their parasitoids. Phytophagous fig wasps (12 species) were more numerous than parasitoids (nine species). The proportion of figs occupied by fig wasps declined with increasing latitude, as did the proportion of utilized ovules in occupied figs. Species richness, diversity, and abundance of fig wasps also significantly changed along both latitudinal and altitudinal gradients. Parasitoids declined more steeply with latitude than phytophages. Seed production declined beyond the natural northern range margin, and at high elevation, because pollinator fig wasps became rare or absent. This suggests that pollinator climatic tolerances helped limit the tree's natural distribution, although competition with another species may have excluded pollinators at the highest altitude site. Isolation by distance may prevent colonization of northern sites by some fig wasps and act in combination with direct and host‐mediated climatic effects to generate gradients in community composition, with parasitoids inherently more sensitive because of declines in the abundance of potential hosts.  相似文献   

3.
As one of the most specialized pollination syndromes, the fig (Ficus)–fig wasp (Agaonidae) mutualism can shed light on how pollinator behaviour and specificity affect plant diversification through processes such as reproductive isolation and hybridization. Pollinator sharing among species has important implications for Ficus species delimitation and the evolutionary history of the mutualism. Although agaonid wasp pollinators are known to visit more than one host species in monoecious figs, pollinator sharing has yet to be documented in dioecious figs. The present study investigated the frequency of pollinator sharing among sympatric, closely‐related dioecious figs in Ficus sections Sycocarpus and Sycidium. Molecular and morphological species identification established the associations between pollinating agaonid wasp species and host fig species. Cytochrome oxidase I was sequenced from 372 Ceratosolen pollinators of Ficus section Sycocarpus and 210 Kradibia pollinators of Ficus section Sycidium. The association between fig species and morphologically distinct clades of pollinator haplotypes was predominantly one‐to‐one. In Ceratosolen, six of 372 pollinators (1.5%) visited fig species other than the predominant host. No pollinator sharing was detected between the two Sycidium host species, although a rare hybrid shared Kradibia pollinators with both parental species. These findings point to low rates of pollinator sharing among closely‐related dioecious fig species in sympatry, and perhaps lower rates than among monoecious figs. Such rare events could be evolutionarily important as mechanisms for gene flow among fig species. Differences in rates of pollinator sharing among fig lineages might explain the conflicting phylogenetic patterns inferred among monoecious figs, dioecious figs, and their respective pollinators. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 546–558.  相似文献   

4.
The ways that plant‐feeding insects have diversified are central to our understanding of terrestrial ecosystems. Obligate nursery pollination mutualisms provide highly relevant model systems of how plants and their insect associates have diversified and the over 800 species of fig trees (Ficus) allow comparative studies. Fig trees can have one or more pollinating fig wasp species (Agaonidae) that breed within their figs, but factors influencing their number remain to be established. In some widely distributed fig trees, the plants form populations isolated by large swathes of sea, and the different populations are pollinated by different wasp species. Other Ficus species with continuous distributions may present genetic signatures of isolation by distance, suggesting more limited pollinator dispersal, which may also facilitate pollinator speciation. We tested the hypothesis that Ficus hirta, a species for which preliminary data showed genetic isolation by distance, would support numerous pollinator species across its range. Our results show that across its range F. hirta displays clinal genetic variation and is pollinated by nine parapatric species of Valisia. This is the highest number of pollinators reported to date for any Ficus species, and it is the first demonstration of the occurrence of parapatric pollinator species on a fig host displaying continuous genetic structure. Future comparative studies across Ficus species should be able to establish the plant traits that have driven the evolution of pollinator dispersal behaviour, pollinator speciation and host plant spatial genetic structure.  相似文献   

5.
Aims Most pollinator fig wasps are host plant specific, with each species only breeding in the figs of one fig tree species, but increasing numbers of species are known to be pollinated by more than one fig wasp, and in rare instances host switching can result in Ficus species sharing pollinators. In this study, we examined factors facilitating observed host switching at Xishuangbanna in Southwestern (SW) China, where Ficus squamosa is at the northern edge of its range and lacks the fig wasps that pollinate it elsewhere, and its figs are colonized by a Ceratosolen pollinator that routinely breeds in figs of F. heterostyla .Methods We recorded the habitat preferences of F. squamosa and F. heterostyla at Xishuangbanna, and compared characteristics such as fig size, location and colour at receptive phase. Furthermore, the vegetative and reproductive phenologies in the populations of F. squamosa and F. heterostyla were recorded weekly at Xishuangbanna Tropical Botanical Garden for 1 year.Important findings Ficus squamosa is a shrub found near fast-flowing rivers, F. heterostyla is a small tree of disturbed forest edges. Although preferring different habitats, they can be found growing close together. Both species have figs located at or near ground level, but they differ in size when pollinated. Fig production in F. squamosa was concentrated in the colder months. F. heterostyla produced more figs in summer but had some throughout the year. The absence of its normal pollinators, in combination with similarly located figs and partially complementary fruiting patterns appear to have facilitated colonization of F. squamosa by the routine pollinator of F. heterostyla. The figs probably also share similar attractant volatiles. This host switching suggests one mechanism whereby fig trees can acquire new pollinators and emphasizes the likely significance of edges of ranges in the genesis of novel fig tree–fig wasp relationships.  相似文献   

6.
Yu H  Compton SG 《PloS one》2012,7(1):e30833
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences.  相似文献   

7.
Fig trees (Ficus: Moraceae) are pollinated by female fig wasps (Agaonidae) whose larvae develop inside galled flowers of unusual inflorescences (figs). Most fig trees also support communities of non‐pollinating fig wasps. Figs of different species display great size variation and contain tens to tens of thousands of flowers. Around one‐half the species of fig trees have the gynodioecious breeding system, where female trees have figs that produce seeds and male trees have figs that support development of pollinators. Mutual mimicry between receptive male and female figs ensures that pollinators enter female figs, even though the insects will die without reproducing, but the need to give no sex‐specific cues to the pollinators may constrain differences in size between receptive male and female figs. We compared relationships between inflorescence size and some measures of reproductive success in male and female figs of Ficus montana grown under controlled conditions in the presence of the pollinator Kradibia tentacularis and its main parasitoid Sycoscapter sp. indesc. Female figs that contained more flowers produced more seeds, but male figs did not increase the production of female pollinator K. tentacularis fig wasps in proportion of the flower number. Although more flowers were galled by the pollinators in male figs containing more female flowers, the high larval mortality caused by parasitism and nutritional limitation prevented the increase in the production of adult female offspring. Selection may favor the increase in flower numbers within figs in female plants of F. montana, but contrarily constrain this attribute in male plants.  相似文献   

8.
9.
The obligate mutualism of figs and fig‐pollinating wasps has been one of the classic models used for testing theories of co‐evolution and cospeciation due to the high species‐specificity of these relationships. To investigate the species‐specificity between figs and fig pollinators and to further understand the speciation process in obligate mutualisms, we examined the genetic differentiation and phylogenetic relationships of four closely related fig‐pollinating wasp species (Blastophaga nipponica, Blastophaga taiwanensis, Blastophaga tannoensis and Blastophaga yeni) in Japan and Taiwan using genome‐wide sequence data, including mitochondrial DNA sequences. In addition, population structure was analysed for the fig wasps and their host species using microsatellite data. The results suggest that the three Taiwanese fig wasp species are a single panmictic population that pollinates three dioecious fig species, which are sympatrically distributed, have large differences in morphology and ecology and are also genetically differentiated. Our results illustrate the first case of pollinator sharing by host shift in the subgenus Ficus. On the other hand, there are strict genetic codivergences between allopatric populations of the two host–pollinator pairs. The possible processes that produce these pollinator‐sharing events are discussed based on the level and pattern of genetic differentiation in these figs and fig wasps.  相似文献   

10.
1. Figs on male dioecious fig trees (Ficus, Moraceae) are breeding sites for pollinator fig wasps (Hymenoptera, Agaonidae), but figs on female plants are traps that produce only seeds. As the short‐lived fig wasps cannot reproduce in female figs, natural selection should favour individuals that avoid them. Several studies have failed to detect such discrimination, a result attributed to inter‐sexual mimicry and ‘selection to rush’ in the wasps, but their experiments failed to explicitly take into account fig age (how long they had been waiting to be pollinated). 2. We compared the relative attraction of male and female figs of known ages of the South East Asian Ficus montana Burm. f. to its pollina tor Liporrhopalum tentacularis Grandi and examined how the reproductive success of the plant and its pollinator change with the age of the figs. 3. Mean retention time for un‐pollinated figs on female plants was 16 days whereas in male figs it was 12 days. Female figs remained attractive for up to 2 weeks, although the wasps were less willing to enter older figs. After pollinator entry, receptivity continued for several days, lasting longer in figs entered by a single wasp. Consistent with abortion rates, attractiveness persisted longer in female figs. Older figs produced fewer fig wasp offspring, but similar numbers of seeds. 4. The sexual differences in floral longevity in F. montana may represent part of a previously un‐recognised reproductive strategy in some fig trees that allows male plants to ‘export’ pollinators while also maintaining a resident fig wasp population.  相似文献   

11.
1. Facilitation is recorded from diverse plant–insect interactions, including pollination and herbivory. 2. The significance of facilitation resulting from the behavior of males of multiple fig wasp species inside figs was investigated. Female fig wasps emerge from natal figs via exit holes dug by males, especially male pollinators. When no males are present, the females struggle to escape and may die. 3. Ficus microcarpa L. is a widely‐established invasive fig tree from Southeast Asia. Its pollinator is absent in South Africa, so the tree cannot reproduce, but two Asian non‐pollinating fig wasps (NPFW) Walkerella microcarpae and Odontofroggatia galili occupy its figs. Abundance patterns of the two NPFW and the proportion of male‐free figs in South Africa, Spain (where the pollinator is introduced), and in China, where the native fig wasp community is diverse, were compared to determine the consequences of reduced species richness for insect survival. 4. Female fig wasps in male‐free figs were found to be trapped, and small clutch sizes contributed to the absence of males in both species. The presence of pollinators in Spain allowed most NPFW to develop in figs containing males. Far more male‐free figs were present in South Africa, elevating mortality rates among female NPFW. Facilitation of female release by males of other NPFW species nonetheless benefitted the rarer species. 5. Selection pressures in South Africa currently favour greater aggregation of NPFW offspring and/or less female biased sex ratios.  相似文献   

12.
The obligate mutualism between fig trees and their fig wasp pollinators, together with the general tendency for each host species to be pollinated by one fig wasp species, led to the hypothesis that these two lineages have cospeciated. The pollinators of African figs of section Galoglychia form a diverse group of genera whose species seem to be less constrained to a specific host than other pollinating fig wasp genera. Various authors have suggested remarkably different phylogenetic relationships between the seven genera associated with section Galoglychia. These uncertainties concerning the classification make it difficult to understand the historical patterns of association between these wasps and their hosts. The phylogenetic tree for the pollinators was reconstructed with 28S, COI and ITS2 DNA sequence data and compared with morphological classification of the hosts. Pollinator genera were monophyletic in all analyses. However, the relative position of some genera remains unresolved. Investigation of host−fig association suggests that there have been frequent host jumps between host subsections. This indicates that cospeciation between fig trees and fig wasps is not as stringent as previously assumed. In addition, pollinators of the genus Alfonsiella associated with three host figs (Ficus craterostoma, F. stuhlmannii and F. petersii) are morphologically very similar in South Africa. We investigated the possibility that these pollinators form a complex of species with host‐based genetic differentiation. Molecular analyses supported the distinction of the pollinator of F. craterostoma as a good species, but the pollinators of F. stuhlmannii and F. petersii clustered within the same clade, suggesting that these two host species share a single pollinator, Alfonsiella binghami. Based on both molecular data and morphological re‐evaluation, a new Alfonsiella species is described, Alfonsiella pipithiensis sp. nov., which is the pollinator of F. craterostoma in southern Africa. A key to both females and males of all described species of Alfonsiella is provided.  相似文献   

13.
The extent of isolation among closely related sympatric plant species engaged in obligate pollination mutualisms depends on the fitness consequences of interspecies floral visitation. In figs (Ficus), interspecific gene flow may occur when pollinating wasps (Agaonidae) visit species other than their natal fig species. We studied reproductive isolation in a clade of six sympatric dioecious fig species in New Guinea. Microsatellite genotyping and Bayesian clustering analysis of the fig community indicated strong reproductive barriers among sympatric species. A total of 1–2% of fig populations consisted of hybrid individuals. A new experimental method of manipulating fig wasps investigated the reproductive consequences of conspecific and heterospecific pollinator visitation for both mutualists. Fig wasps introduced to Ficus hispidioides pollinated and oviposited in receptive figs. Seed development and seedling growth were largely comparable between conspecific and heterospecific crosses. Heterospecific pollinator fitness, however, was significantly less than that of conspecific pollinators. Heterospecific pollinators induced gall formation but offspring did not develop to maturity in the new host. Selection on pollinators maintaining host specificity appears to be an important mechanism of contemporary reproductive isolation among these taxa that could potentially influence their diversification.  相似文献   

14.
Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.  相似文献   

15.
Figs (Moraceae) and pollinator fig wasps (Hymenoptera: Agaonidae) have a highly specific mutualistic relationship but fig wasps occasionally enter atypical hosts, and this can lead to hybrid fig trees and the potential for gene flow between species. Many fig trees are dioecious, with fig wasp offspring developing in galled ovules inside figs on male trees, whereas seeds develop only in figs on female trees. We generated experimental hybrids between the Asian Ficus montana Blume and a closely related African species Ficus asperifolia Miquel. Male F1s were sterile if entered by Kradibia tentacularis (Grandi) (Agaonidae), the pollinator of F. montana, because its offspring always failed to develop, without ovule enlargement. As with the F1s, figs on most male backcross plants [F. montana × (F. montana × F. asperifolia)] also aborted shortly after pollinator entry, resulting in a higher turnover of figs than with F. montana, although the times taken for the figs to reach receptivity were similar. Pollinator larvae nonetheless consistently managed to develop inside the figs of one backcross plant and also occasionally in a few figs from another backcross individual. In these figs, galled ovules developed as normal, whereas in figs that aborted the galled ovules failed to enlarge. The sex ratio of K. tentacularis progeny in the backcross figs was female biased and did not differ from that in F. montana figs. Sycoscapter spec. (Hymenoptera: Pteromalidae), a parasitoid of K. tentacularis, was able to lay eggs and developed normally inside male backcross figs where its host was present.  相似文献   

16.
The interaction between figs (Ficus spp., Moraceae) and their pollinator fig wasps (Hymenoptera: Agaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of Kradibia tentacularis (Grandi) in their first and subsequent male figs of Ficus montana Blume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.  相似文献   

17.
1. Figs and pollinating fig wasps provide a model system for studying mutualism. The permeability of the syconium changes during receptivity or between seasons, which may affect the behaviour of pollinators. Fig fruits are permeable during receptivity, and in some species, pollinators can enter and re‐emerge after oviposition/pollination. We studied the relationship between fig permeability and pollinator re‐emergence behaviour with a functional dioecious fig, Ficus hispida and the obligate pollinator Ceratosolen solmsi marchali. 2. The relationship reflects the interaction of figs and pollinators in the mutualism and also the conflicts of interests between the two partners: figs benefit from the enclosed fig fruits which have low permeability, but pollinators benefit from their re‐emergence behaviour, which requires high fig permeability. 3. The results showed that at the end of receptivity, the permeability of fig fruits lowered rapidly with changes to the ostiole structures, and re‐emergence rate was low, with more re‐emerging pollinators trapped in the ostiolar bracts. Our results also showed that in the rainy season, the length of receptivity was shorter and fig permeability was lower. The re‐emergence rates were also lower than those in the dry season. The results elucidated that figs' interests dominated in the conflicts between fig and pollinating wasp. 4. Based on a new criteria which employed the classification of pollinators found dead in the ostiolar bracts and which involved a survey of 6 monoecious and 12 dioecious fig species, we found that re‐emergence behaviour was prevalent among fig species, and was more prevalent in functional dioecious figs than monoecious ones.  相似文献   

18.
Interacting species of pollinator–host systems, especially the obligate ones, are sensitive to habitat fragmentation, due to the nature of mutual dependence. Comparative studies of genetic structure can provide insights into how habitat fragmentation contributes to patterns of genetic divergence among populations of the interacting species. In this study, we used microsatellites to analyse genetic variation in Chinese populations of a typical mutualistic system – Ficus pumila and its obligate pollinator Wiebesia sp. 1 – in a naturally fragmented landscape. The plants and wasps showed discordant patterns of genetic variation and geographical divergence. There was no significant positive relationship in genetic diversity between the two species. Significant isolation‐by‐distance (IBD) patterns occurred across the populations of F. pumila and Wiebesia sp. 1 as whole, and IBD also occurred among island populations of the wasps, but not the plants. However, there was no significant positive relationship in genetic differentiation between them. The pollinator populations had significantly lower genetic variation in small habitat patches than in larger patches, and three island pollinator populations showed evidence of a recent bottleneck event. No effects of patch size or genetic bottlenecks were evident in the plant populations. Collectively, the results indicate that, in more fragmented habitats, the pollinators, but not the plants, have experienced reduced genetic variation. The contrasting patterns have multiple potential causes, including differences in longevity and hence number of generations experiencing fragmentation; different dispersal patterns, with the host's genes dispersed as seeds as well as a result of pollen dispersal via the pollinator; asymmetrical responses to fluctuations in partner populations; and co‐existence of a rare second pollinating wasp on some islands. These results indicate that strongly interdependent species may respond in markedly different ways to habitat fragmentation.  相似文献   

19.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

20.
The food webs consisting of plants, herbivorous insects and their insect parasitoids are a major component of terrestrial biodiversity. They play a central role in the functioning of all terrestrial ecosystems, and the number of species involved is mind‐blowing (Nyman et al. 2015 ). Nevertheless, our understanding of the evolutionary and ecological determinants of their diversity is still in its infancy. In this issue of Molecular Ecology, Sutton et al. ( 2016 ) open a window into the comparative analysis of spatial genetic structuring in a set of comparable multitrophic models, involving highly species‐specific interactions: figs and fig wasps. This is the first study to compare genetic structure using population genetics tools in a fig‐pollinating wasp (Pleistodontes imperialis sp1) and its main parasitoid (Sycoscapter sp.A). The fig‐pollinating wasp has a discontinuous spatial distribution that correlates with genetic differentiation, while the parasitoid bridges the discontinuity by parasitizing other pollinator species on the same host fig tree and presents basically no spatial genetic structure. The full implications of these results for our general understanding of plant–herbivorous insect–insect parasitoids diversification become apparent when envisioned within the framework of recent advances in fig and fig wasp biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号