首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and AimsHybridization is the main driver of plant diversification, and gene flow via hybridization has multifaceted effects on plant evolution. Carex angustisquama is an extremophyte that grows on soils heavily acidified by volcanism. Despite its habitat distinct from that of other species, this species is known to form interspecific hybrids, implying interspecific gene flow. It is crucial to verify the extent and direction of interspecific gene flow between C. angustisquama and closely related species to understand the evolutionary process of an extremophyte in solfatara fields.MethodsIn this study, expressed sequence tag–simple sequence repeat markers were utilized to infer the extent and direction of interspecific gene flow between C. angustisquama and closely related species.Key ResultsBayesian clustering and simulation analyses revealed that all individuals of the three hybrid species were classified into the first hybrid generation or first backcross to C. angustisquama; therefore, current interspecific gene flow is limited. Moreover, in the Bayesian inference of historical gene flow based on multispecies samples, the model that assumed no interspecific gene flow was the most strongly supported across all species pairs, including phylogenetically close but ecologically distinctive species pairs.ConclusionsOur results revealed that interspecific gene flow between C. angustisquama and its related species has been limited both currently and historically. Moreover, our results of Bayesian inference of historical gene flow indicated that extrinsic, rather than intrinsic, factors probably act as isolating barriers between Carex species, with hybrid breakdown via microhabitat segregation being the probable potential barrier. Overall, our findings provide insights into the evolutionary process of an extremophyte in solfatara fields and offer an important example of the mechanisms of diversification of the speciose genus Carex.  相似文献   

2.
  • Volcanic acidification creates extreme soil conditions, where rhizotoxicity from extremely low pH (2–3) and high Al3+ strongly inhibit plant growth. C. angustisquama is a dominant extremophyte in highly acidic solfatara fields, where no other vascular plants can survive. Here we investigated the key abiotic stressor determining survival of this extremophyte.
  • Soil analyses and topographic surveys were conducted to examine the effects of low pH and Al3+, two major abiotic stressors in acidic soils, on the occurrence of C. angustisquama in solfatara fields. Hydroponic culture experiments were also performed to test its growth responses to these stressors.
  • In field surveys, the spatial distribution of soil pH was consistent with vegetation zonation within a solfatara field. In contrast, soil exchangeable Al content was overall low due to strong eluviation. Statistical analysis also supported the significant role of soil pH in determining the distribution of C. angustisquama in a solfatara field. Furthermore, hydroponic culture experiments revealed a higher tolerance of C. angustisquama to low pH than a sister species, especially in the range pH 2–3, corresponding to the pH values of the actual habitats of C. angustisquama. Conversely, no significant interspecific difference was detected in Al3+ tolerance, indicating that both species had high Al3+ tolerance.
  • This study suggests that low pH is a critical abiotic stressor leading to formation of the extremophyte in highly acidic solfatara fields. In contrast, C. angustisquama displayed high tolerance to Al3+ toxicity, probably acquired prior to speciation.
  相似文献   

3.
Colletotrichum truncatum was initially described from pepper and has been reported to infect 180 host genera in 55 plant families worldwide. Samples were collected from pepper plants showing typical anthracnose symptoms. Diseased samples after isolation were identified as C. truncatum based on morphological characters and ITS‐rDNA and β‐tubulin sequence data. Intersimple sequence repeat (ISSR) markers were used to estimate genetic diversity in C. truncatum from Malaysia. A set of 3 ISSR primers revealed a total 26 allele from the amplified products. Cluster analysis with UPGMA method clustered C. truncatum isolates into two main groups, which differed with a distance of 0.64. However, the genetic diversity of C. truncatum isolates showed correlation between genetic and geographical distribution, but it failed to reveal a relationship between clustering and pathogenic variability. Phylogenetic analyses discriminated the C. truncatum isolates from other reference Colletotrichum species derived from GenBank. Among the morphological characters, shape, colour of colony and growth rate in culture were partially correlated with the ISSR and phylogenetic grouping. Pathogenicity tests revealed that C. truncatum isolates were causal agents for pepper anthracnose. In the cross‐inoculation assays, C. truncatum isolates were able to produce anthracnose symptoms on tomato, eggplant, onion, lettuce and cabbage. A pathogenicity and cross‐inoculation studies indicated the potential of C. truncatum for virulence and dominancy on plant resistance.  相似文献   

4.
Carex moorcroftii Falc. ex Boott is a rhizomatous clonal sedge dominating vast alpine steppe and meadow vegetations in the hinterland of the Qinghai-Tibet plateau. To reveal the genetic and clonal structure of this species, nine populations were investigated using ten inter-simple sequence repeat (ISSR) markers. As compared to other rhizomatous Carex species, C. moorcroftii had lower genetic diversity (Hs = 0.10) at population level and higher genetic differentiation (Gst = 0.66) and lower gene flow (Nm = 0.26) between populations. Clonal diversity in C. moorcroftii in terms of Simpson index (D = 0.65) was comparable to that in other clonal species while lower than that in Carex species from the arctic and subarctic areas. The ratio of clonal diversity to genetic variation in C. moorcroftii was closely correlated with latitude, enabling a speculation about the northern migration of this species on this plateau.  相似文献   

5.
We characterised the phylogeographic patterns displayed by five species of bumblebees with largely overlapping ranges in Eurasia, but different levels of range fragmentation, range size and food specialization. Genetic variation across the range of each species was explored by using sequence variation of a total of 368 specimens at one mitochondrial and two nuclear DNA fragments (total of ~2380 bp). Comparing patterns of genetic variation across species allowed us to investigate whether diet specialization, relative range size and/or fragmentation, impact phylogeographic patterns in bumblebees. As expected, stronger fragmentations of the species range are associated with a stronger overall geographic differentiation. Furthermore, diet specialization appears to increase population structure at the landscape level, presumably due to the less widespread and more heterogeneously distributed food resources. Conversely, no clear association was highlighted between diet specialization or overall range size and genetic diversity. Surprisingly, the two generalist and co‐distributed species investigated, B. pratorum and B. hortorum, displayed widely divergent patterns in terms of genetic diversity and population structure. We suggest these differences are best explained by contrasting responses to past climate changes, possibly involving different glacial refuges. Overall, our results are compatible with a combined impact of two interacting parameters on intraspecific genetic variation: environment disturbances (presumably related to past climate changes) and features specific to the organism, such as diet specialization. They thus further highlight the challenge of dissociating both parameters in phylogeographic studies.  相似文献   

6.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

7.
Madagascar is a biodiversity hotspot with a unique fauna and flora largely endemic at the species level and highly threatened by habitat destruction. The processes underlying population‐level differentiation in Madagascar's biota are poorly understood and have been proposed to be related to Pleistocene climatic cycles, yet the levels of genetic divergence observed are often suggestive of ancient events. We combined molecular markers of different variability to assess the phylogeography of Madagascar's emblematic tomato frogs (Dyscophus guineti and D. antongilii) and interpret the observed pattern as resulting from ancient and recent processes. Our results suggest that the initial divergence between these taxa is probably old as reflected by protein‐coding nuclear genes and by a strong mitochondrial differentiation of the southernmost population. Dramatic changes in their demography appear to have been triggered by the end of the last glacial period and possibly by the short return of glacial conditions known as the 8K event. This dramatic change resulted in an approximately 50‐fold reduction of the effective population size in various populations of both species. We hypothesize these species' current mitochondrial DNA diversity distribution reflects a swamping of the mitochondrial genetic diversity of D. guineti by that of D. antongilii previous to the populations' bottlenecks during the Holocene, and probably as a consequence of D. antongilii demographic expansion approximately 1 million years ago. Our data support the continued recognition of D. antongilii and D. guineti as separate species and flag D. guineti as the more vulnerable species to past and probably also future environmental changes.  相似文献   

8.
Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within‐species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population‐level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 GST) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean GST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.  相似文献   

9.
Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio‐economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi‐structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material (n = 190 individuals) from five populations at study sites using single‐dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species (Hsp = 0.3397, Isp = 0.5236) and population (percentage of polymorphic loci = 85.63%, Hpop = 0.2937, Ipop = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio‐economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.  相似文献   

10.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

11.
Polyploidy is an important factor shaping the geographic range of a species. Clintonia udensis (Clintonia) is a primary perennial herb widely distributed in China with two karyotypic characteristics—diploid and tetraploid and thereby used to understand the ploidy and distribution. This study unraveled the patterns of genetic variation and spatiotemporal history among the cytotypes of C. udensis using simple sequence repeat or microsatellites. The results showed that the diploids and tetraploids showed the medium level of genetic differentiation; tetraploid was slightly lower than diploid in genetic diversity; recurrent polyploidization seems to have opened new possibilities for the local genotype; the spatiotemporal history of C. udensis allows tracing the interplay of polyploidy evolution; isolated and different ecological surroundings could act as evolutionary capacitors, preserve distinct karyological, and genetic diversity. The approaches of integrating genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udens would possibly provide a powerful way to understand the ploidy and plant distribution and undertaken in similar studies in other plant species simultaneously contained the diploid and tetraploid.  相似文献   

12.
Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B.  相似文献   

13.
The ecosystem and Pleistocene glaciations play important roles in population demography. The freshwater gudgeon, Gobiobotia filifer, is an endemic benthic fish in the Yangtze River and is a good model for ecological and evolutionary studies. This study aimed to decode the population structure of G. filifer in the Yangtze River and reveal whether divergence occurred before or after population radiation. A total of 292 specimens from eight locations in the upper and middle reaches of the Yangtze River were collected from 2014 to 2016 and analyzed via mitochondrial DNA Cyt b gene sequencing. A moderately high level of genetic diversity was found without structures among the population. However, phylogenetic and network topology showed two distinct haplotype groups, and each group contained a similar proportion of individuals from all sampled sites. This suggested the existence of two genetically divergent source populations in G. filifer. We deduced that a secondary contact of distinct glacial refugia was the main factor creating sympatric populations of G. filifer, and climate improvement promoted population expansion and colonization.  相似文献   

14.
Understanding the relative contributions of intrinsic and extrinsic factors to population structure and genetic diversity is a central goal of conservation and evolutionary genetics. One way to achieve this is through comparative population genetic analysis of sympatric sister taxa, which allows evaluation of intrinsic factors such as population demography and life history while controlling for phylogenetic relatedness and geography. We used ten conserved microsatellites to explore the population structure and genetic diversity of three sympatric and closely related plover species in southwestern Madagascar: Kittlitz's plover (Charadrius pecuarius), white‐fronted plover (C. marginatus), and Madagascar plover (C. thoracicus). Bayesian clustering revealed strong population structure in the rare and endemic Madagascar plover, intermediate population structure in the white‐fronted plover, and no detectable population structure in the geographically widespread Kittlitz's plover. In contrast, allelic richness and heterozygosity were highest for the Kittlitz's plover, intermediate for the white‐fronted plover and lowest for the Madagascar plover. No evidence was found in support of the “watershed mechanism” proposed to facilitate vicariant divergence of Madagascan lemurs and reptiles, which we attribute to the vagility of birds. However, we found a significant pattern of genetic isolation by distance among populations of the Madagascar plover, but not for the other two species. These findings suggest that interspecific variation in rarity, endemism, and dispersal propensity may influence genetic structure and diversity, even in highly vagile species.  相似文献   

15.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

16.
Reticulate evolution can be a major driver of diversification into new niches, especially in disturbed habitats and at the edges of ranges. Industrial fermentation strains of yeast provide a window into these processes, but progress has been hampered by a limited understanding of the natural diversity and distribution of Saccharomyces species and populations. For example, lager beer is brewed with Saccharomyces pastorianus, an alloploid hybrid of S. cerevisiae and S. eubayanus, a species only recently discovered in Patagonia, Argentina. Here, we report that genetically diverse strains of S. eubayanus are readily isolated from Patagonia, demonstrating that the species is well established there. Analyses of multilocus sequence data strongly suggest that there are two diverse and highly differentiated Patagonian populations. The low nucleotide diversity found in the S. eubayanus moiety of hybrid European brewing strains suggests that their alleles were drawn from a small subpopulation that is closely related to one of the Patagonian populations. For the first time, we also report the rare isolation of S. eubayanus outside Patagonia, in Wisconsin, USA. In contrast to the clear population differentiation in Patagonia, the North American strains represent a recent and possibly transient admixture of the two Patagonian populations. These complex and varied reticulation events are not adequately captured by conventional phylogenetic methods and required analyses of Bayesian concordance factors and phylogenetic networks to accurately summarize and interpret. These findings show how genetically diverse eukaryotic microbes can produce rare but economically important hybrids with low genetic diversity when they migrate from their natural ecological context.  相似文献   

17.
18.
To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family‐level phylogeny. Here, we use general linear mixed‐effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family‐level phylogeny to estimate topology‐based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family‐level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family‐level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top‐rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family‐level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.  相似文献   

19.
Recently, we reported the chloroplast genome‐wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra‐specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra‐specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high‐resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.  相似文献   

20.
Southwest China is an important biodiversity hotspot. The interactions among the complex topography, climate change, and ecological factors in the dry‐hot valley areas in southwest China may have profoundly affected the genetic structure of plant species in this region. In this study, we determined the effects of the Tanaka Line on genetic variation in the wild Bombax ceiba tree in southwest China. We sampled 224 individuals from 17 populations throughout the dry‐hot valley regions. Six polymorphic expressed sequence tag–simple sequence repeat primers were employed to sequence the PCR products using the first‐generation Sanger technique. The analysis based on population genetics suggested that B. ceiba exhibited a high level of gene diversity (HE: 0.2377–0.4775; I: 0.3997–0.7848). The 17 populations were divided into two groups by cluster analysis, which corresponded to geographic characters on each side of the Tanaka Line. In addition, a Mantel test indicated that the phylogeographic structure among the populations could be fitted to the isolation‐by‐distance model (r2 = .2553, < .001). A barrier test indicated that there were obstacles among populations and between the two groups due to complex terrain isolation and geographic heterogeneity. We inferred that the Tanaka Line might have promoted the intraspecific phylogeographic subdivision and divergence of B. ceiba. These results provide new insights into the effects of the Tanaka Line on genetic isolation and population differentiation of plant species in southwest China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号