首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flightless insects give a clearer view of former distribution of montane habitat in Africa compared with highly mobile animals as birds and butterflies because passive long distance transport and long distance dispersal can be discounted. Only a few species in the twenty-one genera under study are shared between neighbouring mountains which can be explained in all cases by a Pleistocene lowering of the montane habitat by 850 m. Therefore a montane forest cover connecting the mountains at colder times as suggested by the pluvial theory can be refuted which is in correspondence with palynological findings suggesting a dry corridor between the mountains. No montane refuge for flightless insects can be identified, because the most species-rich mountain of a genus differs among the genera under study. Instead, each mountain served as a species refuge with a stable habitat. The requirement of a smaller habitat compared to vertebrates is indicated by endemic species on each single mountain suggesting pre-Pleistocene speciation which results even in endemic genera to one mountain. Different small patches of suitable habitat on one mountain could also explain the radiations found in some genera of flightless insects. In some genera species are lacking on Mt Kenya which indicates—with the findings of no endemic passerine bird on the mountain—a probably very dry condition during colder times. On Mt Cameroon no species of the flightless insect genera occurring on the Eastern mountains are found. This contrasts with the existing patterns of birds, grasses and butterflies.  相似文献   

2.
Insects have invaded marine habitats only rarely and secondarily. Recently, we discovered a flightless dipteran species skating rapidly on the surface of seawater ponds at the Pacific coast of eastern China. Morphological analyses initially suggested an isolated position of the non‐biting midge, suggesting the erection of a new genus within Chironomini (Diptera: Chironomidae). However, an analysis of molecular data revealed that the marine species is in fact nested within the species‐rich genus Dicrotendipes. The apparent conflict between molecular and morphological data can be easily explained. It is likely that the new species has evolved a series of autapomorphic adaptations. These traits clearly distinguish the taxon from other species of the genus but do not justify the erection of a new supraspecific taxon, which would render Dicrotendipes paraphyletic. The switch to marine environments was likely a trigger for various morphological modifications resulting from increased selective pressure. Molecular data suggest that the potential speciation event occurred around 19–29 Ma, linked with a migration from freshwater to seawater ponds along the Pacific Ocean. Considering the results of our analysis, we place the flightless marine skater in the genus Dicrotendipes. All life stages of Dicrotendipes sinicus Qi & Lin sp. n. are described and illustrated, associated with larvae obtained by rearing or confirmed through association with DNA barcodes. The biology and ecology of the species are outlined based on collection data and in situ observations. Evolutionary patterns linked with repeated invasions of marine habitats are discussed.  相似文献   

3.
Rafting in Antarctic Collembola   总被引:1,自引:0,他引:1  
Darwin was an early exponent of the importance of 'occasional means of dispersal' in accounting for the present-day distribution of plants and animals. This study examined the implications of capture on the water surface of meltwater and seawater for the local and long-range dispersal of Antarctic springtails. Individuals of the maritime Antarctic collembolan Cryptopygus antarcticus , were floated on tap water and seawater at 0, 5 and 10°C. LT50s on seawater were 34 (10°C), 65 (5°C) and 75 (0°C) days. On tap water, LT50s were 69 (10°C), 126 (5°C) and 239 (0°C) days. Less than 20% escaped from the water surface. A significantly greater proportion of springtails moulted on tap water and viable offspring were produced on both tap water and seawater. Comparison across treatments of survival of moulting and non-moulting individuals found significantly greater survival in moulting animals for three of the treatment combinations. It is suggested that moult exuviae facilitate survival on the water film through the simultaneous provision of a flotation aid and a source of nourishment – that is, an 'edible raft'. A separate experiment measuring changes in haemolymph osmolality over time on tap water and seawater at 2 and 5°C found significant differences in all treatments. Causes of mortality are discussed in relation to osmoregulatory failure and starvation.  相似文献   

4.
This study surveyed the mitochondrial haplotype diversity of nine freshwater fish species and two estuarine–marine species from the coastal basins and drainages of the highland plateaus of Paraná, Brazil. Portions of the cytochrome b gene or the control region were sequenced. The demographic history of each species was inferred using the Bayesian skyline method, mismatch distribution analysis and statistical neutrality tests. Demographic reconstruction analyses revealed a single pattern of variation in the effective population size (Ne) among species. No dramatic changes in Ne were detected in upland species. By contrast, evidence of population expansion over the past 200 000 years was detected in all coastal plain and estuarine species. These findings correspond to periods of low sea‐level (regressions) followed by a rapid increase in the sea‐level by >100 m. The resulting reconnections and subsequent fragmentation and isolation between the estuarine and freshwater bodies were putatively relevant to the historical demography of the fish species in these areas.  相似文献   

5.
The neustonic isopod Idotea metallica inhabits objects drifting at the sea surface. Animals found on floating patches represent not just ephemeral assemblages but persistent local populations. Drift material collected in the Mediterranean, the North Atlantic, and the North Sea harboured populations of up to about 50 animals including all developmental stages. In laboratory experiments the species proved to be able to establish populations on spatially limited, isolated substrates. The capacity of 5-litre-microcosms for I. metallica was about 130 animals. In the presence of the coastally distributed congener Idotea baltica, however, laboratory populations of I. metallica went extinct within 12 weeks. Even though high colonisation rates can be expected in coastal waters because of high patch densities, metapopulation persistence is mostly restricted to the open sea. In coastal waters extinction rate of local populations increases because of patch destruction and the species' inferiority to coastally distributed competitors. Due to high uncertainties in estimating patch densities, it is difficult to determine the parameters underlying metapopulation dynamics such as the migration rate and the rate of patch occupancy. Electronic Publication  相似文献   

6.
Scaly‐sided Mergansers Mergus squamatus breed on freshwater rivers in far eastern Russia, Korea and China, wintering in similar habitats in China and Korea, but nothing was known of their moulting habitat. To investigate the moult strategies of this species, we combined wing feather stable isotope ratios (males and females) with geolocator data (nesting females) to establish major habitat types (freshwater, brackish or saltwater) used by both sexes during wing moult. Although most Scaly‐sided Mergansers of both sexes probably moult on freshwater, some males and non‐breeding and failed breeding females appeared to undertake moult migration to brackish and marine waters. Given the previous lack of any surveys of coastal or estuarine waters for this species during the moult period, these findings suggest important survey needs for the effective conservation of the species during the flightless moult period.  相似文献   

7.
Range shifts are predicted for numerous species due to climate change, and therefore understanding species dispersal is more crucial than ever. For some species, their low dispersal capabilities may prevent them from reaching new, suitable habitats, thus threatening their survival. This is of particular concern for those ground beetles which are flightless and depend on a specific type of habitat. However, studies on ground beetle dispersal rates are rare. We investigated the shift in distribution range of Carabus hortensis in northwestern Germany over a span of 22 years. We found that this species disperses on average 127 m per year with low variation between years. Although C. hortensis’ movement (locomotory) activity is not different or lower than that found in similar ground beetles, its dispersal rate is rather low. We speculate that this slow range expansion may be due to a long individual development time from egg to teneral and suggest that in the face of climate change, conservation actions, like assisted migration, may be an option for such slow dispersing species.  相似文献   

8.
Dixon DR  Pruski AM  Dixon LR 《Mutation research》2004,552(1-2):235-246
Comet and agarose gel electrophoresis (AGE) assays were used to show that haemocytes (blood cells) and gill tissues of vent mussels, Bathymodiolus azoricus, are sensitive to hydrostatic pressure change, but can repair DNA damage induced by retrieval from 840 m to the sea surface. In contrast, animals collected from 1700 m survived for only a few days in the laboratory, which was reflected in their poor DNA quality. These findings support the hypothesis of a physiological barrier to survival around 1000-1500 m depth, which these results show affects both vent and non-vent species alike. Based on in vitro experimental exposures to hydrogen peroxide and MMC, vent mussels appear to have sensitivities to the environmental mutagens that are not significantly different from those of coastal mussels.  相似文献   

9.
Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential ‘new shoreline’ will be limited by human infrastructure and ecosystem alteration that will lead to a ‘coastal squeeze’ of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios.  相似文献   

10.
To compare rectal gland morphology of bull sharks Carcharhinus leucas , animals captured in the freshwater reaches of the Brisbane River, Australia, were acclimated to sea water over 17 days with 1 week in the final salinity. A control group was left in fresh water for 17 days. Animals in fresh water and sea water were strongly hyper- and hypo-ionic with respect to plasma Na+ and Cl, respectively. This difference necessitates NaCl secretion by the rectal gland in sea water and conservation of NaCl in fresh water. Structural differences in the rectal gland of freshwater and seawater acclimated bull sharks were limited. There was no difference in rectal gland cross-sectional area, lumen area, rectal gland vein area, number of secretory tubules or secretory cells per secretory tubule in freshwater and seawater acclimated animals. At a cellular level, there was no difference between the degree of basolateral and lateral folding, number of mitochondria or number of desmosomes per tight junction. Tight junction width was significantly greater in seawater acclimated animals. The number of red blood cells in the interstitial tissue was also significantly higher in seawater acclimated animals, possibly as a result of increased blood perfusion of the secretory epithelia. The lack of major structural changes in the rectal glands of bull sharks acclimated to fresh water and sea water most likely represents the salinity gradient in the Brisbane River where animals are found throughout the river and can experience large fluctuations in salinity over short distances. Differences in rectal gland morphology of bull sharks in fresh water and sea water are discussed in terms of their relevance to osmoregulation in elasmobranchs.  相似文献   

11.
The post spawning behaviour of sea trout Salmo trutta was studied over a 2 year period in the river and estuary of the River Fowey, south‐west England. Forty‐five sea trout kelts were trapped immediately after spawning in December and intraperitoneally tagged with miniature acoustic transmitters. The subsequent emigration into coastal waters was monitored using acoustic receivers deployed throughout the river catchment. The levels of gill Na+K+ATPase activity in sea trout kelts sampled at the same time as the tagged fish were within the range of 2·5 to 4·5 μmol Pi per mg protein per h indicating that the post‐spawning fish were not physiologically adapted to salt water. The tagged kelts were resident in fresh water between 4 and 70 days before entering the estuary. Sixty two per cent of the tagged kelts subsequently migrated successfully into coastal waters, with a higher success rate for male fish (75%) than females (58%). There was a significant size related difference in the run‐timing of the kelts with the larger fish moving more quickly into coastal waters after spawning than smaller fish. Seaward migration within fresh water was predominantly nocturnal and generally occurred in conjunction with increasing river discharge and rising water temperature. Migration through the estuary continued to be predominantly nocturnal and occurred during an ebbing tide. Residency within the estuary varied amongst individuals although it was invariably short, with most fish moving out into coastal waters within one to two tidal cycles. Five tagged kelts returned from the coastal zone and re‐entered fresh water during April and June. Marine residence time varied between 89 and 145 days (mean 118 days) and the minimum estimated marine survival was c. 18%. One of these sea trout was subsequently recaptured after successfully spawning in the vicinity where it had been previously tagged demonstrating a degree of spawning site fidelity.  相似文献   

12.
Five species of sea skaters, genus Halobates Eschscholtz, are the only insects to have successfully colonized the open ocean. In addition, 38 species are found in sheltered coastal waters throughout tropical Indo-Pacific. The taxonomy of the genus is relatively well known, and the phylogeneuc relationships between extant species have recently been analysed (using cladistic methods). In the present paper, we describe the first fossil species of sea skaters, Halobates ruffoi sp. no v. from the Eocene deposit 'Pesciara di Bolca', in the province of Verona, northeastern Italy (geological age about 45 Myr). The significance of this fossil in setting the time scale for the reconstructed phylogeny and anagenesis of adaptive features of sea skaters, and in understanding the evolution and historical zoogeography of these marine insects is discussed.  相似文献   

13.
Migrations of diverse wildlife species often converge in space and time, with their journeys shaped by similar forces (i.e. geographic barriers and seasonal resources and conditions); we term this ‘co-migration’. Recent studies have illuminated multi-speciesmigrations by land and sea including the simultaneous movements of numerous insects, birds, bats and of fish invertebrates marine predators. Beyond their significance as natural wonders, species with overlapping migrations may interact ecologically, with potential effects on population and community dynamics. Direct and indirect ecological interactions (including predation and competition) between migrant species remain poorly understood, in part because migration is the least-studied phase of animals’ annual cycles. To address this gap, we conducted a literature review to examine whether animal migration studies incorporate multiple species and to what extent they investigate interspecific interactions between co-migrants. Following a key word search, we read all migration research papers in 23 relevant peer-reviewed journals during 2008–2017. Thirty percent of animal migration papers reported two or more species with coinciding migrations, suggesting that co-migrations are common, although few studies investigated or discussed these mixed-species migrations further. Synthesizing these, we present examples and describe five types of ecological interactions between migrating species, including predator–prey, host–parasite and commensal relationships. Considering migratory animals as interacting with migrant communities will enhance understanding of the drivers of migration and could improve predictions about wildlife responses to global change. Further research focused on multi-species migrations could also inform conservation efforts for migratory animal populations, many of which are declining or shifting, with unexplored consequences for other co-migratory species.  相似文献   

14.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

15.
Although insects expand their distribution by various ways, generally only the adult phase has been taken into consideration in research on dispersal. In Megacrania tsudai, it has been proposed that eggs are dispersed through seawater. To test this hypothesis, eggs were treated under normal condition (NC) on wet cotton swabs, and marine condition (MC), floating on salt water for 30, 60, 90, and 365 days. In addition, eggs in the NC and MC treatment groups were dissected every 10 days to verify the developmental stage. The hatching rates in the NC and MC treatment groups were not significantly different among the five treatment groups. However, the egg period, time from laying to hatching, in the MC treatment group was significantly longer than that in any other treatment groups. The egg period was lengthened when the floating period on seawater was longer. The time of the start of egg development was similar in the NC and MC treatment groups, but the developmental speed was slower in the MC treatment group. These results support that M. tsudai can expand its distribution by dispersing its eggs through seawater, probably thanks to specific characteristics of eggs that allow their survival when they float in the sea.  相似文献   

16.
Human‐induced changes in the climate and environment that occur at an unprecedented speed are challenging the existence of migratory species. Faced with these new challenges, species with diverse and flexible migratory behaviors may suffer less from population decline, as they may be better at responding to these changes by altering their migratory behavior. At the individual level, variations in migratory behavior may lead to differences in fitness and subsequently influence the population's demographic dynamics. Using lifetime GPS bio‐logging data from 169 white storks (Ciconia ciconia), we explore whether the recently shortened migration distance of storks affects their survival during different stages of their juvenile life. We also explore how other variations in migratory decisions (i.e., time, destination), movement activity (measured using overall body dynamic acceleration), and early life conditions influence juvenile survival. We observed that their first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risks. In addition, higher movement activity and overwintering “closer‐to‐home” (with 84.21% of the tracked individuals stayed Europe or North Africa) were associated with higher survival. Our study shows how avian migrants can change life history decisions over only a few decades, and thus it helps us to understand and predict how migrants respond to the rapidly changing world.  相似文献   

17.
Aim Resources can shape patterns of habitat utilization. Recently a broad foraging dichotomy between oceanic and coastal sites has been revealed for loggerhead sea turtles (Caretta caretta). Since oceanic and coastal foraging sites differ in prey availability, we might expect a gross difference in home‐range size across these habitats. We tested this hypothesis by equipping nine adult male loggerhead sea turtles with GPS tracking devices. Location National Marine Park of Zakynthos (NMPZ) Greece, central and eastern Mediterranean (Adriatic, Ionian and Aegean seas). Methods In 2007, 2008 and 2009, Fastloc GPS‐Argos transmitters were attached to nine male loggerheads. In addition, a Sirtrack PTT unit was attached to one male in 2007. Four of the turtles were tracked on successive years. We filtered the GPS data to ensure comparable data volumes. Route consistency between breeding and foraging sites of the four re‐tracked turtles was conducted. Foraging site home range areas and within site movement patterns were investigated by the fixed kernel density method. Results Foraging home range size ranged between circa 10 km2 at neritic habitats (coastal and open‐sea on the continental shelf) to circa 1000 km2 at oceanic sites (using 90% kernel estimates), the latter most probably reflecting sparsely distributed oceanic prey. Across different years individuals did not follow exactly the same migration routes, but did show fidelity to their previous foraging sites, whether oceanic or neritic, with accurate homing in the final stages of migration. Main conclusions The broad distribution and diverse life‐history strategies of this population could complicate the identification of priority marine protected areas beyond the core breeding site.  相似文献   

18.
Larval recruitment is essential for sustaining coral communities and a fundamental tool in some interventions for reef restoration. To improve larval supply and post‐settlement survival in sexually assisted coral restoration efforts, an integrated in situ collector system, the larval cradle, was designed to collect spawned gametes then culture the resulting larvae until settled on artificial substrates. The final design of the larval cradle was cylindrical, a nylon mesh structure with a volume of 9 m3, suspended in the sea and extending vertically toward the seabed. We found three key design features that improved the efficiency of the apparatus: (1) an open area of sea surface and mesh size of less than 100 μm produced high fertilization and optimal survival (>90%), (2) a special skirt‐shaped net (3 m in diameter) with a connection hose for attaching the cradle to collect bundles from many adult colonies over a wide area and at various depths, and (3) adding short square tube pieces, called square hollow sections, as a substrate for enhancing larval settlement and survival, to a larval cradle at 4 days after spawning was optimal for uniform settlement. This system allowed not only the collection of several million eggs, but also subsequent production of several thousand settled juvenile corals, without land facilities. Our design achieved several hundred times higher survival for early life stages of Acropora tenuis compared to nature.  相似文献   

19.
The majority of insect species do not show an innate behavioural migration, but rather populations expand into favourable new habitats or contract away from unfavourable ones by random changes of spatial scale. Over the past 50 years, the scientific fascination with dramatic long-distance and directed mass migratory events has overshadowed the more universal mode of population movement, involving much smaller stochastic displacement during the lifetime of the insects concerned. This may be limiting our understanding of insect population dynamics. In the following synthesis, we provide an overview of how herbivorous insect movement is governed by both abiotic and biotic factors, making these animals essentially ''slaves of their environment''. No displaced insect or insect population can leave a resource patch, migrate and flourish, leaving descendants, unless suitable habitat and/or resources are reached during movement. This must have constrained insects over geological time, bringing about species-specific adaptation in behaviour and movements in relation to their environment at a micro- and macrogeographical scale. With insects that undergo long-range spatial displacements, e.g. aphids and locusts, there is presumably a selection against movement unless overruled by factors, such as density-dependent triggering, which cause certain genotypes within the population to migrate. However, for most insect species, spatial changes of scale and range expansion are much slower and may occur over a much longer time-scale, and are not innate (nor directed). Ecologists may say that all animals and plants are figuratively speaking ''slaves of their environments'', in the sense that their distribution is defined by their ecology and genotype. But in the case of insects, a vast number must perish daily, either out at sea or over other hostile habitats, having failed to find suitable resources and/or a habitat on which to feed and reproduce. Since many are blown by the vagaries of the wind, their chances of success are serendipitous in the extreme, especially over large distances. Hence, the strategies adopted by mass migratory species (innate pre-programmed flight behaviour, large population sizes and/or fast reproduction), which improve the chances that some of these individuals will succeed. We also emphasize the dearth of knowledge in the various interactions of insect movement and their environment, and describe how molecular markers (protein and DNA) may be used to examine the details of spatial scale over which movement occurs in relation to insect ecology and genotype.  相似文献   

20.
In situ phytoplankton microcosms were developed and characterized for use in toxicity testing. The microcosms contained 225 μm filtered seawater maintained in 1 liter glass bottles attached to a plastic frame and immersed at 3 m under the sea surface. Synechococcus and picoeukaryote population dynamics in microcosms and the surrounding water were compared. A bloom-like behaviour observed for Synechococcus in these phytoplankton microcosms was avoided when 10% of the culture volume was replaced, every two days, by filtered seawater. After 2 weeks, no significant difference in Synechococcus and picoeukaryotes cell counts was observed in microcosms compared to the surrounding free seawater. Synechococcus fluorescence at 545 nm (phycoerythrobilin) fluctuated with a similar pattern in such microcosms and in free seawater and were shown to be correlated to light intensity fluctuations over a two week experiment. The in situ microcosms were used to study the impact of low copper additions. Synechococcus populations were dramatically decreased by copper addition, while picoeukaryote populations were increased simultaneously. Our data show that drastic changes in species composition can occur at copper concentrations encountered in polluted coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号