首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As corporate responsibility for environmental management has gained attention, eco‐efficiency has become recognized as an important concept for improving the social performance of the business sector as well as that of the public sector. Improving eco‐efficiency is widely accepted not only as a means of increasing economic value, but also as a means of reducing environmental effects. However, managing for eco‐efficiency should take into consideration the differences among industries, because the impact of eco‐efficiency on financial and social performance varies among industries. To explore this variation, we conducted a cross‐industry analysis of eco‐efficiency based on social performance using data envelopment analysis (DEA). DEA measures relative efficiency and is a useful tool for taking into account the relative importance of industry‐specific characteristics. Using DEA, eco‐efficiency scores were derived based on the ratio of two factors of social performance: (1) value‐added inducing and production‐inducing economic spillover effects and (2) the amount of greenhouse gases emitted and energy used. Then, we identified the relationships between our eco‐efficiency score and financial performance, which is a measure of the firm's stability. The case study is based on 272 firms in 16 industries in South Korea. Results show that firms in product manufacturing and service‐intensive industries tend to have higher eco‐efficiency scores than those in raw material or chemical‐intensive industries. In addition, most of the industries reveal no relationship between traditional financial performance metrics and eco‐efficiency scores. A handful of industries had significant relationships with one or more financial performance metrics; in some cases, these relationships were negative, whereas in others they were positive. Surprisingly, almost all industries have no significant relationships between eco‐efficiency and financial performance. This result implies that government support for policies that reward firms that attempt to be eco‐efficient are needed, or that other nonfinancial metrics that influence eco‐efficiency, such as employment and brand reputation, should be considered. This article is expected to support policy makers as they formulate industry‐specific environmental strategies.  相似文献   

2.
Life cycle assessment (LCA) is one of the most popular methods of technical‐environmental assessment for informing environmental policies, as, for instance, in municipal solid waste (MSW) management. Because MSW management involves many stakeholders with possibly conflicting interests, the implementation of an LCA‐based policy can, however, be blocked or delayed. A stakeholder assessment of future scenarios helps identify conflicting interests and anticipate barriers of sustainable MSW management systems. This article presents such an approach for Swiss waste glass‐packaging disposal, currently undergoing a policy review. In an online survey, stakeholders (N = 85) were asked to assess disposal scenarios showing different LCA‐based eco‐efficiencies with respect to their desirability and probability of occurrence. Scenarios with higher eco‐efficiency than the current system are more desirable and considered more probable than those with lower eco‐efficiency. A combination of inland recycling and downcycling to foam glass (insulation material) in Switzerland is desired by all stakeholders and is more eco‐efficient than the current system. In contrast, institutions of MSW management, such as national and regional environmental protection agencies, judge a scenario in which nearly all cullet would be recycled in the only Swiss glass‐packaging factory as more desirable than supply and demand stakeholders of waste glass‐packaging. Such a scenario involves a monopsony rejected by many municipalities and scrap traders. Such an assessment procedure can provide vital information guiding the formulation of environmental policies.  相似文献   

3.
Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials per ton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which cal-cination of limestone and the combustion of fuels each con-tribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis).
In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion ar-ticle (part II), some of the environmental challenges and op-portunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.  相似文献   

4.
Construction materials account for a significant proportion of nonfuel materials flows throughout the industrialized world. Hydraulic (chiefly portland) cement, the binding agent in concrete and most mortars, is an important construction material. Portland cement is made primarily from finely ground clinker, a manufactured intermediate product that is composed predominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process typically requires approximately 3 to 6 million Btu (3.2 to 6.3 GJ) of energy and 1.7 tons of raw materials (chiefly limestone) per ton (t) of clinker produced and is accompanied by significant emissions of, in particular, carbon dioxide (CO2), but also nitrogen oxides, sulfur oxides, and particulates. The overall level of CO2 output, about 1 ton/ton clinker, is almost equally contributed by the calcination of limestone and the combustion of fuels and makes the cement industry one of the top two manufacturing industry sources of this greenhouse gas. The enormous demand for cement and the large energy and raw material requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels and provide the industry with significant opportunities to symbiotically utilize large quantities of by-products of other industries.
This article, the second in a two-part series, summarizes some of the environmental challenges and opportunities facing the cement manufacturing industry. In the companion article, the chemistry, technology, raw materials, and energy requirements of cement manufacture were summarized. Because of the size and scope of the U.S. cement industry, the article relies primarily on data and practices from the United States.  相似文献   

5.
Evaluating the sustainability of the urban water cycle is not straightforward, although a variety of methods have been proposed. Given the lack of integrated data about sewers, we applied the eco‐efficiency approach to two case studies located in Spain with contrasting climate, population, and urban and sewer configurations. Our goal was to determine critical variables and life cycle stages and provide results for decision making. We used life cycle assessment and life cycle costing to evaluate their environmental and economic impacts. Results showed that both cities have a similar profile, albeit their contrasting features, that is, operation and maintenance, was the main environmental issue (50% to 70% of the impacts) and pipe installation registered the greatest economic capital expenditure (70% to 75%) due to labor. The location of the wastewater treatment plant (WWTP) is an essential factor in our analysis mainly due to the topography effects (e.g., the annual pump energy was 13 times greater in Calafell). Using the eco‐efficiency portfolio, we observed that sewers might be less eco‐efficient than WWTPs and that we need to envision their design in the context of an integrated WWTP‐sewer management to improve sewer performance. In terms of methodological approach, the bidimensional nature of eco‐efficiency enables the benchmarking of product systems and might be more easily interpreted by the general public. However, there are still some constraints that should be addressed to improve communication, such as the selection of indicators discussed in the article.  相似文献   

6.
China has more than 1,500 industrial parks, which, collectively, play a crucial role in facilitating industrialization and urbanization. A key characteristic of these parks is that most rely on shareable energy infrastructure, an efficient configuration that can also deliver substantial and sustainable reductions in greenhouse gas (GHG) emissions. This study offers strategies for mitigating GHG emissions from Chinese industrial parks. We focus on extensive data collection for the 106 industrial parks listed in the national demonstration eco‐industrial park (EIP) program. In doing so, we carefully examine the evolution of 608 serviceable energy infrastructure units by vintage year, fuel type, energy output, and technologies of combined heat and power units. We assess direct GHG emissions from both energy infrastructure and the parks, and then identify the features and driving forces of energy infrastructure development in the EIPs. We also offer recommendations for ways to mitigate the GHG emissions from these industrial parks. The energy infrastructure stocks in Chinese EIPs are characterized by heavy coal dependence (87% of capacity) and high ratios of direct GHG emissions versus the total direct emissions of the park (median value: 75.2%). These findings establish a baseline from which both technology and policy decisions can then be made in an informed way.  相似文献   

7.
This article focuses on the effects of policy instruments for developing viable eco‐industrial parks (EIPs) in China. We analyzed the root of China's national EIP program and inventoried the general instruments available to local authorities to shape and promote eco‐industrial development. Empirical research conducted in Tianjin Economic‐technological Development Area and Dalian Development Area led to the activities and actions conducted by local authorities. A quantitative method, technique for order of preference by similarity to ideal solution, was adopted to reveal the effects of policy instruments for comparative analysis. We conclude that the planned EIP model is useful in the early stage of EIP development, and, subsequently, it should be combined with a facilitated model to achieve long‐term goals for eco‐transformation. To this end, the policy package of economic, regulatory, and voluntary instruments should be integrated and tailored in alignment with the local situation.  相似文献   

8.
In pursuit of more sustainable development of industry, China has been actively developing eco‐industrial parks (EIPs) for more than a decade. However, the environmental value of these EIPs remains largely unverified. This study aimed to evaluate the environmental performance of national EIPs in China using data envelopment analysis. Eco‐efficiency and environmental performance indices were used to represent the static and dynamic environmental performance of EIPs, respectively. An environmental performance index was formed by combining measures of eco‐efficiency in a dynamic setting with the sequential Malmquist index approach. We obtained three main empirical findings. First, 34 national EIPs exhibited a cumulative environmental performance improvement of 89.4% from 2007 to 2010, which is primarily the result of eco‐efficiency change rather than environmental technical change. Second, compared with the trial EIPs, the demonstration EIPs had a higher average eco‐efficiency (0.611 vs. 0.446 in 2010) and experienced greater average environmental performance improvement (129% vs. 60%). Third, the EIPs retrofitted from high‐tech industrial development zones exhibited much higher average eco‐efficiency (0.798 vs. 0.440 in 2010) than those retrofitted from economic and technical development zones. The key measures supporting the performance improvement and policy implications for the development of EIPs are also discussed.  相似文献   

9.
This paper studies drivers for eco‐innovation in Russian manufacturing firms on a sample of 2,212 innovative firms, of which over 600 introduced eco‐innovations. The companies in our sample specifically mention environmental regulation as a reason for engaging in eco‐innovations. Furthermore, we show that those firms who engage in eco‐innovations are motivated even stronger by the desire to increase resource efficiency. Companies under state ownership are especially prone to a higher likelihood to invest. We conclude that regulations are mostly relevant to the late comers who are obliged to follow minimum standards. On the other hand, the state uses its controlling influence to press companies under their control to exceed these minimum standards. Thus, we argue, state ownership does indeed have an influence on both the likelihood to eco‐innovate and on the levels of spending. Eco‐innovative state‐owned companies are only prone to invest in eco‐innovations, if they get additional money.  相似文献   

10.
Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life‐history traits (the age‐ and size‐at‐maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life‐history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age‐to‐maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age‐at‐maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.  相似文献   

11.
This article examines the concept of eco‐efficiency at a regional level as an approach to promote the sustainable transformation of regions, using the regions of Poland as an example. The data envelopment analysis (DEA) method—the input‐oriented Charnes, Cooper, and Rhodes (CCR) model—was chosen as the eco‐efficiency analysis tool because of its high capability to measure the regional eco‐efficiency. The research process was divided into two stages. First, the chosen instruments of mathematical statistics (e.g., Hellwig's method and coefficient of determination) were applied to ensure an appropriate combination of environmental and economic indicators of the eco‐efficiency equation. Next, the CCR model was used to calculate the eco‐efficiency scores. The results of the study have revealed that the regions of Lubuskie, Mazowieckie, ?l?skie, Warmińsko‐Maurskie, and Wielkopolskie are relatively eco‐efficient, whereas the remaining regions use too many environmental resources in relation to the produced value of goods and services. Six of the eleven eco‐inefficient regions in Poland have increasing returns to scale, that is, the usage of natural resources connected with the negative impact upon the environment rises slower than the values of goods and services. Notwithstanding, it is beneficiary from the perspective of sustainability. The obtained research results are a valuable source of management information for the creation of regional environmental protection strategies and a basis for searching for the causes of eco‐inefficiency.  相似文献   

12.
Eco‐evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco‐evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco‐evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host–virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade‐off between host resistance and growth then maintained host diversity over time (trade‐off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations.  相似文献   

13.
Interest in eco‐evolutionary dynamics is rapidly increasing thanks to ground‐breaking research indicating that evolution can occur rapidly and can alter the outcome of ecological processes. A key challenge in this sub‐discipline is establishing how important the contribution of evolutionary and ecological processes and their interactions are to observed shifts in population and community characteristics. Although a variety of metrics to separate and quantify the effects of evolutionary and ecological contributions to observed trait changes have been used, they often allocate fractions of observed changes to ecology and evolution in different ways. We used a mathematical and numerical comparison of two commonly used frameworks – the Price equation and reaction norms – to reveal that the Price equation cannot partition genetic from non‐genetic trait change within lineages, whereas the reaction norm approach cannot partition among‐ from within‐lineage trait change. We developed a new metric that combines the strengths of both Price‐based and reaction norm metrics, extended all metrics to analyse community change and also incorporated extinction and colonisation of species in these metrics. Depending on whether our new metric is applied to populations or communities, it can correctly separate intraspecific, interspecific, evolutionary, non‐evolutionary and interacting eco‐evolutionary contributions to trait change.  相似文献   

14.
For at least the past two decades, eco‐industrial parks (EIPs) have been promoted as policy and commercial instruments for achieving industrial sustainable development. Yet, few EIPs have seen successful operational implementation, especially if they begin as standard industrial parks. Rapid economic growth, commensurate with increasing environmental damage in China, has resulted in officials’ further pursuing EIP policy as a significant element of the broader circular economy and ecological modernization efforts. This article examines the barriers for EIP development from industrial park senior manager perspectives. Using resource dependence theory and the resource‐based view as theoretical lenses, we investigate the external and internal barriers for EIP development in 51 Chinese industrial parks. A number of barriers are identified and grouped through a factor analysis. Cluster analysis is utilized to help categorize and evaluate the perceived levels of barriers and hardships experienced by various senior officials that manage the EIPs. It is found that few respondents encounter no significant barriers. Barriers related to technological development and capacity building are the most prevalent. These results highlight the relative importance of various activities that may be necessary by policy makers and other stakeholders to overcome the barriers. For example, cooperation in developing technological solutions for EIPs seems to be a major thrust that should be pursued by EIP development stakeholders. Other policy and managerial insights based on the general findings of this study are also presented.  相似文献   

15.
Renewable energy (RE) technologies are looked upon favorably to provide for future energy demands and reduce greenhouse gas (GHG) emissions. However, the installation of these technologies requires large quantities of finite material resources. We apply life cycle assessment to 100 years of electricity generation from three stand‐alone RE technologies—solar photovoltaics, run‐of‐river hydro, and wind—to evaluate environmental burden profiles against baseline electricity generation from fossil fuels. We then devised scenarios to incorporate circular economy (CE) improvements targeting hotspots in systems’ life cycle, specifically (1) improved recycling rates for raw materials and (ii) the application of eco‐design. Hydro presented the lowest environmental burdens per kilowatt‐hour of electricity generation compared with other RE technologies, owing to its higher efficiency and longer life spans for main components. Distinct results were observed in the environmental performance of each system based on the consideration of improved recycling rates and eco‐design. CE measures produced similar modest savings in already low GHG emissions burdens for each technology, while eco‐design specifically had the potential to provide significant savings in abiotic resource depletion. Further research to explore the full potential of CE measures for RE technologies will curtail the resource intensity of RE technologies required to mitigate climate change.  相似文献   

16.
The importance of ‘eco‐evolutionary feedbacks’ in natural systems is currently unclear. Here, we advance a general hypothesis for a particular class of eco‐evolutionary feedbacks with potentially large, long‐lasting impacts in complex ecosystems. These eco‐evolutionary feedbacks involve traits that mediate important interactions with abiotic and biotic features of the environment and a self‐driven reversal of selection as the ecological impact of the trait varies between private (small scale) and public (large scale). Toxic algal blooms may involve such eco‐evolutionary feedbacks due to the emergence of public goods. We review evidence that toxin production by microalgae may yield ‘privatised’ benefits for individual cells or colonies under pre‐ and early‐bloom conditions; however, the large‐scale, ecosystem‐level effects of toxicity associated with bloom states yield benefits that are necessarily ‘public’. Theory predicts that the replacement of private with public goods may reverse selection for toxicity in the absence of higher level selection. Indeed, blooms often harbor significant genetic and functional diversity: bloom populations may undergo genetic differentiation over a scale of days, and even genetically similar lineages may vary widely in toxic potential. Intriguingly, these observations find parallels in terrestrial communities, suggesting that toxic blooms may serve as useful models for eco‐evolutionary dynamics in nature. Eco‐evolutionary feedbacks involving the emergence of a public good may shed new light on the potential for interactions between ecology and evolution to influence the structure and function of entire ecosystems.  相似文献   

17.
Refurbishing products, which are increasingly sold in business‐to‐consumer markets, is a key strategy to reduce waste. Nevertheless, research finds that consumers’ willingness to pay (WTP) for refurbished products is low. Strategies for a higher WTP are needed in order to grow consumer markets for refurbished products. Eco‐certification of refurbished products may be a key strategy here. Drawing on the consumer WTP literature concerning “green” products, we investigate the impact of independent eco‐certificates. Our analysis is based on a survey of 231 potential customers. The results suggest that, across various product categories, the WTP for products with refurbished components is significantly lower. Adding an eco‐certificate tends to return the WTP toward the virgin product level. We show that consumers with proenvironmental attitudes particularly exhibit green buying behavior. Our findings indicate that eco‐certification is often worthwhile because it enhances the business rationale for producing products with refurbished components.  相似文献   

18.
Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta‐analysis and integrated assessment of the effects of mitigation measures on NH3, CH4 and (direct and indirect) N2O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3, CH4 and N2O emissions from individual sources statistically using results of 126 published studies. Whole‐chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24–65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2O emissions were found for straw‐covered slurry storages (by two orders of magnitude) and manure injection (by 26–199%). These side‐effects of straw covers and slurry injection on N2O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade‐offs in the manure management chain. Proper farm‐scale combinations of mitigation measures are important to minimize impacts of livestock production on global emissions of NH3 and GHG.  相似文献   

19.
Although numerous hypotheses exist to explain the overwhelming presence of sexual reproduction across the tree of life, we still cannot explain its prevalence when considering all inherent costs involved. The Red Queen hypothesis states that sex is maintained because it can create novel genotypes with a selective advantage. This occurs when the interactions between species induce frequent environmental change. Here, we investigate whether coevolution and eco‐evolutionary feedback dynamics in a predator‐prey system allows for indirect selection and maintenance of sexual reproduction in the predator. Combining models and chemostat experiments of a rotifer‐algae system we show a continuous feedback between population and trait change along with recurrent shifts from selection by predation and competition for a limited resource. We found that a high propensity for sex was indirectly selected and was maintained in rotifer populations within environments containing these eco‐evolutionary dynamics; whereas within environments under constant conditions, predators evolved rapidly to lower levels of sex. Thus, our results indicate that the influence of eco‐evolutionary feedback dynamics on the overall evolutionary change has been underestimated.  相似文献   

20.
In this review, I first address the basics of gas exchange, water‐use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water‐use efficiency in northern Australian tree species. In general, C3 plants face a trade‐off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water‐use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water‐use efficiency. This may explain why community‐level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water‐use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water‐use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole‐plant water‐use efficiency. Finally, I discuss the role of water‐use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2. In coming decades, increases in plant water‐use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号