首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

2.
中国石龙子个体发育过程中头部两性异型和食性的变化   总被引:11,自引:1,他引:10  
许多动物呈现个体大小、局部形态特征 (头部大小 )和体色的两性异形[5,14 ,15,2 1,2 2 ] 。 Darwin[12 ] 认为两性谋求各自最大的繁殖利益导致了两性异形 ,因此两性异形是性选择压力作用的结果。自 Darwin以来 ,许多同行认为性选择压力和非性选择压力均能导致动物的两性异形 ,两种选择压力在不同的动物中所起的作用是不同的 [2~ 5,7,10 ,16,2 1~ 2 6] 。性选择压力导致的两性异形与繁殖成功率直接有关。非性选择压力导致的两性异形与繁殖成功率无关或无直接的关系 ,如两性寿命的差异 [13 ]、两性食性的分离 [6,2 1]和两性分配用于生长的…  相似文献   

3.
Hagfishes have been the target of commercial fisheries in many areas of the world, with the catch processed for leather and for human consumption. A fishery has been operating in New Zealand waters for the last six years, harvesting the bearded hagfish, Eptatretus cirrhatus. The fishery has thus far been unregulated. Based on samples collected dockside over a two-year period, this report expands the morphometric database for this species, provides information on the size and weight of the harvested animals, determines the sizes at the onset of gonadal development and the minimum sizes at sexual maturation for males and females, and indicates that E. cirrhatus, like most other hagfish species, has no specific breeding season. Although females appear in the population at smaller sizes, the sex ratio for mature animals is 1:1 and the sizes of the largest males and females are comparable. The changes observed in sex ratio as a function of TL suggest differences in the timing and rates of gonadal development in females versus males rather than protogyny. Based on the size of the eggs, the number of eggs per female, the proportion of the population that contains large eggs, and the number of postovulatory females, it is clear that E. cirrhatus, like other hagfish species, are potentially vulnerable to overexploitation.  相似文献   

4.
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age‐related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size‐dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex‐change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.  相似文献   

5.
The development of secondary sexual characters, the petasma, and thelycum growth were studied in Xiphopenaeus kroyeri. In adult females, the thelycum is a single plate and its anterolateral portion is characterized by a reduced hood. The aperture resembles a transverse ridge. In immature stages, the ridge has a space between the plates, which becomes narrower as it reaches the end of development. The female gonopore is ‘comma’ shaped. In adult males, the endopods of the petasma are linked at the dorsomedial margin by a large quantity of cincinnuli. In juveniles, cincinnuli gradually increase in number until they join both endopods. At the end of development the petasma is T-shaped. The male gonopore is C-shaped. The relative growth of the petasma total length versus juvenile body length showed a highly positive allometry, whereas in adults the growth was isometric. For the relationship carapace length versus thelycum width, the juvenile phase of females is characterized by an isometry and the adult phase by a negative allometry.  相似文献   

6.
Males of the horned beetle Onthophagus acuminatus Har. (Coleoptera: Scarabaeidae) exhibit horn length dimorphism due to a sigmoidal allometric relationship between horn length and body size: the steep slope of the allometry around the inflection of the sigmoid curve separates males into two groups; those larger than this inflection possess long horns, and those smaller than this inflection have short horns or lack horns. I examined the genetic basis of the allometric relationship between horn length and body size by selecting males that produced unusually long horns, and males that produced unusually short horns, for their respective body sizes. After seven generations of selection, lines selected for relatively long horns had significantly longer horn lengths for a given body size than lines selected for relatively short horns, indicating a heritable component to variation in the allometry. The sigmoidal shape of the allometry was not affected by this selection regime. Rather, selected lines differed in the position of the allometry along the body size axis. One consequence of lateral shifts in this allometric relationship was that the body size separating horned from hornless males (the point of inflection of the sigmoid curve) differed between selection lines: lines in which males were selected for relatively long horns began horn production at smaller body sizes than lines selected for relatively short horns. These results suggest that populations can evolve in response to selection on male horn length through modification of the growth relationship between horn length and body size.  相似文献   

7.
The size at maturity was studied in the crab Aegla uruguayana from the Areco River (31°14′ S, 59°28′ W), Argentina. Size at sexual maturity was determined according to three criteria: morphometric (change in the relative growth of reproductive characters), histological (first maturation of gonads) and functional (capability to mate and carry eggs). Regarding females, morphometric maturity occurred at a carapace length (CL) of 11.50 mm, considering abdomen width as a reproductive character. Gonad maturity of females could be observed at a minimum size ranging from 15 to 17 mm CL. The smallest ovigerous female observed in the field was 15.60 mm CL, although a relevant population incidence of ovigerous females (86.6%) has just been observed at values higher than 17 mm CL. As for males, the relative growth of the left chela length changed at a value of 15.40 mm CL, while morphological changes in sexual tube occurred between CL of 14 and 16 mm. Testicular maturation occurred at a CL ranging from 17 to 19 mm. The smallest size of males having spermatozoids in their vasa deferentia was 18.70 mm CL. The results obtained indicated that, in both sexes, functional maturity occurred after morphometric maturity and at a size similar to that of gonad maturity. Comparing sexes, females acquired sexual maturity (morphometric, gonad and functional maturity) at sizes statistically smaller than those of males.  相似文献   

8.
The size distribution, length–weight relationship and size at the onset of sexual maturity of the orange mud crab (Scylla olivacea) from four geographically distinct locations (Taiping, Setiu, Kota Marudu and Lundu) representing Malaysian waters were analysed and estimated. Scylla olivacea was found in the size range of 47–134?mm carapace width. Males were significantly smaller in size but heavier than females. Geographical variation in carapace width and body weight were significant, but no interaction was found between sexes and locations. As shown by the length–weight relationships of S. olivacea, the males exhibited positive growth allometry whereas the females exhibited negative growth allometry. Males mature physiologically prior to attaining morphometric sexual maturity. Females, however, achieve physiological and morphometric sexual maturity in synchrony. No significant variation was found in the estimates of size at the onset of sexual maturity of males and females among different locations. We recommend the use of the third right walking leg merus length and carapace width to estimate the size at the onset of sexual maturity (morphometric maturity) for S. olivacea. Data obtained in this study serve as important baseline data for future mud crab resource management in Malaysia and were used to recommend minimum landing sizes for S. olivacea in each respective location based on the largest size at the onset of sexual maturity estimates were suggested.  相似文献   

9.
1. In many animal species, dietary habits shift with body size, and differ between the sexes. However, the intraspecific range of body sizes is usually low, making it difficult to quantify size-associated trophic shifts, or to determine the degree to which sex differences in diet are due to body-size differences. Large snakes are ideal for such a study, because they provide a vast range of body sizes within a single population.
2. More than 1000 Reticulated Pythons ( Python reticulatus ) from southern Sumatra were examined, with specimens from 1·5 to > 6 m in snout–vent length, and from 1 to 75 kg in mass. Females attained much larger body sizes than did conspecific males (maxima of 20 vs 75 kg, 5 vs 7 m), but had similar head lengths at the same body lengths.
3. Prey sizes, feeding frequencies and numbers of stomach parasites (ascarid nematodes) increased with body size in both sexes, and dietary composition changed ontogenetically. Small snakes fed mostly on rats, but shifted to larger mammalian taxa (e.g. pangolins, porcupines, monkeys, wild pigs, mouse deer) at 3–4-m body length.
4. Adult males and females showed strong ecological divergence. For some traits, this divergence was entirely caused by the strong allometry (combined with sexual size dimorphism), but in other cases (e.g. feeding frequency, dietary composition), the sexes followed different allometric trajectories. For example, females shifted from rats to larger mammals at a smaller body size than did conspecific males, and feeding frequencies increased more rapidly with body size in females than in males. These allometric divergences enhanced the degree of sex difference in trophic ecology induced by sexual size dimorphism.  相似文献   

10.
If maturation is more costly for females, they may need more distinct environmental cues to induce sexual reproduction than males. We verified this hypothesis by comparing the indirect costs of maturation to males and females of the heterogonic Hydra oligactis, reproducing both asexually and sexually. The laboratory experiments revealed that males mature 2 weeks earlier than the first females at falling temperatures simulating the natural conditions that precede sexual reproduction. The difference between the energy costs of maturation for males versus females has been considered a likely factor responsible for the observed difference in maturation time. Available food supply positively affected the percentage of sexually mature females, indicating that females are more sensitive to food limitation than males. The number of gonads was correlated positively with the size of mature hydra for both males and females. However, males produced twice as many testes as ovaries produced by females. We postulate that females are induced later than males in order to prevent gonadal development after an unseasonable drop in temperature. As sexual reproduction in H. oligactis interferes with asexual budding, under favorable conditions for asexual proliferation unnecessary gonadal development decreases an individual’s fitness through reduction of the number of produced offspring.  相似文献   

11.
Many animal taxa exhibit a positive correlation between sexual size dimorphism and sex differences in age at maturity, such that members of the larger sex mature at older ages than members of the smaller sex. Previous workers have suggested that sexual bimaturation is a product of sex differences in growth trajectories, but to date no one has tested this hypothesis. The current study uses growth-based models to study relationships between sexual size dimorphism and sexual bimaturation in species with asymptotic growth after maturity. These models show that sex differences in asymptotic size would produce sexual bimaturation even if both sexes approach their respective asymptotic sizes at the same age, mature at the same proportion of asymptotic size and have otherwise equivalent growth and maturation patterns. Furthermore, our analyses show that there are three ways to reduce sexual bimaturation in sexually size-dimorphic species: (1) higher characteristic growth rates for members of the larger sex, (2) larger size at birth, hatching or metamorphosis for members of the larger sex or (3) smaller ratio of size at maturity to asymptotic size (relative size at maturity) for members of the larger sex. Of these three options, sex differences in relative size at maturity are most common in size-dimorphic species and, in both male-larger and female-larger species, members of the larger sex frequently mature at a smaller proportion of their asymptotic size than do members of the smaller sex. Information about the growth and maturation patterns of a taxon can be used to determine relationships between sexual size dimorphism and sexual bimaturation for the members of that taxon. This process is illustrated for Anolis lizards, a genus in which both sexes exhibit the same strong correlation (r 0.97) between size at maturity and asymptotic size, and in which the relative size at maturity is inversely related to asymptotic size for both sexes. As a result, sexually size-dimorphic species of anoles exhibit the expected pattern of a smaller relative size at maturity for members of the larger sex. However, for species in this genus, sex differences in the relative size at maturity are not strong enough to produce the same age at maturity for both sexes in sexually size-dimorphic species. Members of the larger sex (usually males) are still expected to mature at older ages than members of the smaller sex in Anolis lizards.  相似文献   

12.
When males are the larger sex, a positive allometric relationship between male and female sizes is often found across populations of a single species (i.e. Rensch’s rule). This pattern is typically explained by a sexual selection pressure on males. Here, we report that the allometric relationship was negative across populations of a shell-brooding cichlid fish Lamprologus callipterus, although males are extremely larger than females. Male L. callipterus collect and defend empty snail shells in each of which a female breeds. We found that, across six populations, male and female sizes are positively correlated with not only sexual and fecundity selection indices, but also with shell sizes. Given their different reproductive behaviours, these correlations mean that males are required to be more powerful, and thus larger, to transport larger shells, while female bodies are reduced to the shell size to enable them to enter the shells. Among the three size selections (sexual selection, fecundity selection and shell size), shell size explained the allometry, suggesting that females are more strongly subject to size selection associated with shell size availability than males. However, the allometry was violated when considering an additional population where size-selection regimes of males differed from that of other populations. Therefore, sexual size allometry will be violated by body size divergence induced by multiple selection regimes.  相似文献   

13.
This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or “early life stages” were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aXb. A total of 125 chitons (4≤TL≤40 mm, in total length “TL”) were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods (“Pw” without gonad, “Pe” gonad emergence, and “Pf” gonadal sac formed) and four stages (“S0” gametocytogenesis, “S1” gametogenesis, “S2” mature, and “S3” spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13–14.32 mm, Pe 10.32–16.93 mm, Pf 12.99–25.01 mm, S0 16.08–24.34 mm (females) and 19.51–26.60 mm (males), S1 27.15–35.63 mm (females) and 23.45–32.27 mm (males), S2 24.48–40.24 mm (females) and 25.45–32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management.  相似文献   

14.
Males of dimorphic species often show ornaments that are thought to have evolved through female choice or/and male–male competition. The sexual differentiation of similar morphologies occurs during ontogeny, resulting in differential sex and age-specific selection. The Long-tailed Manakin is a dimorphic species with a highly skewed mating system, the males of which delay plumage maturation over 3 to 4 years. We describe ontogenetic changes in feather morphology in this species through sexual maturity. Males showed a significant increase in length of the central rectrices with age, hence their degree of sexual dimorphism increased from zero in 1-year-old males to 189.5% in adults. In contrast, male tail length decreased with age. Wing length did not vary significantly with age, but females had relatively longer wings than males. Wing loading was greater in females and decreased with age in males. In adults, rectrix length was positively correlated with testis volume, supporting the hypothesis that secondary sexual characters can signal the condition of primary sexual characters. Rectrix length showed positive allometry with body size in males less than 4 years old, whereas older males showed negative allometry and females showed isometry. Wing area and wing loading shifted from negative to positive allometry in males of 2 to 3 years of age. Changes in male morphology during ontogeny in the Long-tailed Manakin appeared to be associated with their specific display behaviours. Age-related changes in allometric growth of rectrices in the Long-tailed Manakin suggested that young males invest disproportionately more in the length of this trait relative to their body size. This investment could act as a signal of competitive ability to move status position in their orderly queue.  相似文献   

15.
Juvenile growth rates are thought to be restricted by available food resources. In animals that grow throughout the year, such as tropical lizards, growth is therefore predicted to be faster during the rainy season. We test this prediction using a population of Anolis nebulosusby describing the growth trajectories of both sexes using nonlinear regression models, and we then correlate the growth rates of individuals with food available in the environment, precipitation, and temperature. The Von Bertalanffy model fits the growth rates of the females better, while the logistic‐by‐length model fits the males better. According to both models, the males grew faster than females, reaching slightly smaller sizes at adulthood. Males reached sexual maturity when 35 mm long, at an age of seven months, and females matured at 37 mm (SVL), taking nine months to reach this size. In 1989, juvenile males and females grew more in both seasons (rainy and dry) than adults; for 1990, there were no differences by season or between age classes. These results are interesting since in the 1989 and 1990 rainy seasons, practically the same orders of prey and the greatest abundance of prey available in the environment were registered. A possible explanation could be that predation was more intense in 1990 than in 1989. There is little evidence that food, temperature, and humidity affect growth rates of A. nebulosus, refuting our predictions. This is mainly due to the low variation in growth observed in 1990. Therefore we think that the growth of this species reflects a complex combination of ecological and genetic factors.  相似文献   

16.
Sex differences in early development may play an important role in the expression of sexual size dimorphism at the adult stage. To test whether sexual size dimorphism is present in pre-emergent chinook salmon (Oncorhynchus tshawytscha), alevins were reared at two temperatures (10 °C and 15 °C) and sexed using the OtY1 marker on the Y-chromosome. Linear mixed models were used to test for sex differences in alevin size within families while controlling for the random effects of sire and dam nested within sire. Males and females did not differ in weight at 10 °C but males were heavier than females at 15 °C. Sex accounted for 2% of the within-family variance in weight. In addition, at 15°C, the relationship between weight and sex was greater in families with larger eggs. Whereas male-biased sexual size dimorphism was present at the juvenile stage, female-biased sexual size dimorphism was present at sexual maturity. Males were also younger than females at sexual maturity. A head start on growth by males may underlie their earlier maturation at a smaller size, thus leading to female-biased SSD at the adult stage.  相似文献   

17.
The reproductive biology of Caranx rhonchus (Geoffroy Saint‐Hilaire, 1817) (Pisces, Carangidae) was studied in the Gulf of Gabès (Mediterranean Sea) from June 2004 to May 2006. Of 1313 individuals examined, 668 were females (50.9%) and 645 were males (49.1%). The overall sex ratio did not deviate significantly in favour of females (♀ : ♂ = 1.04 : 1). Monthly changes in the Gonado–Somatic Index (GSI) showed a rapid increase from May to June and an extended very high level from June to September (4.43–3.47% for females and 3.35–2.61% for males), before declining sharply in October (down to 2.02% for females and 0.57% for males). The gametogenesis activity began with a pre‐maturation phase from March to May, followed by a ripe‐spawning phase from June to September. From the last days of July to the end of October, the gonads were in the spent and post‐spawning stages. From November to early May, gonads were in the resting stages. The size at which 50% of the population reached sexual maturity was not significantly different between males and females :  males attained sexual maturity at fork length FL50 = 161.20 ± 0.37 mm (n = 262), whereas females attained maturity at FL50 = 160.70 ± 0.23 mm (n = 296). The age of maturity for both sexes occurred at 2.1 years.  相似文献   

18.
Evolution of adaptation through allometric shifts in a marine snail   总被引:1,自引:0,他引:1  
Variation in ontogenetic development among individuals may be a major contributor to morphological variation within species. Evolution of different growth trajectories might, for example, evolve as a response to varying ecological contexts of individuals living in different environments, or by life-stage or gender differences. The intertidal periwinkle Littorina saxatilis is strongly polymorphic in shell shape. We compared ontogenetic trajectories between life stages, local populations, and sexes to understand how different morphological end points are reached during ontogeny and what might cause these differences. Applying landmark-based geometric morphometrics, we captured shell shape variation for four Swedish populations of this species. We also derived a method to visualize ontogenetic trajectories described by the relationship of size to the multivariate shape space. We found that growth trajectories differed between individuals living in different habitats, as well as between sexes and maturity stages. Males living on rocky cliffs grew isometrically throughout life, whereas females from the same habitat switched from isometric growth as juveniles to allometric growth as adults. In contrast, males and females living on boulders grew allometrically as juveniles but changed to isometric growth at sexual maturity. Thus, in this species, ontogenetic growth seems influenced by habitat-associated selection as well as by gender and age-specific selection. These differing selection regimes result in ontogenetic shifts in allometry in three of the four groups examined.  相似文献   

19.
Allometric methods and theory derived from principles of relative growth provide new and powerful approaches to an understanding of the nature and development of sexual dimorphism among living primates. The Frankfurt collection of Liberian chimpanzee skulls and mandibles provides a large skeletal sample from a single natural population of wild shot animals, including individuals of all ages and both sexes, and allows investigation of allometric and heterochronic patterns of sexual dimorphism. Univariate, bivariate, and multivariate analyses are utilized in this study in order to ascertain the ontogenetic nature of male-female differences in the skull of the Liberian chimpanzee. The results of univariate and multivariate analyses indicate that, while overall levels of sexual dimorphism in the chimpanzee skull are small, the greatest differences are in dimensions of the viscerocranium, while neurocranial dimensions and orbital size tend to be less dimorphic. Bivariate regressions of 21 cranial variables against basicranial length document positive allometry in many facial and mandibular dimensions, and isometry or negative allometry for most neurocranial dimensions. The data confirm previous work in chimpanzees and other anthropoid primates suggesting that males and females are “ontogenetically scaled” in most cranial traits. That is, males and females share the same cranial growth trajectories, although ending up at different points. Both rate and time hypermorphosis are suggested as underlying causes of ontogenetic scaling in the Liberian chimpanzee.  相似文献   

20.
The sex and stage of gonadal development of longfinned river eels Anguilla reinhardtii , captured from nine river catchments in New South Wales, Australia, between 1999 and 2001, were determined macroscopically. Sex was verified by histology. Histology was also necessary, however, to accurately define stages of gonadal development, particularly in individuals <600 mm in total body length. Anguilla reinhardtii displayed asynchronous gamete development. The most advanced cells present in migrating male and female A. reinhardtii were spermatocytes and pre-vitellogenic oocytes, respectively. Gonadal development stages were positively correlated with body size in both sexes. Females, however, were significantly larger than males and their gonads matured over a broader size range. Size at sexual differentiation (42–60 cm for males and 50–76 cm for females) was much larger than for most other anguillids that have been studied, with the exception of the New Zealand longfinned eel Anguilla dieffenbachii . Corresponding with its large range in size at sexual differentiation was a relatively large range in size at migration for both males (44–62 cm) and females (74–142 cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号