首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In viviparous species, a conflict over maternal resource allocation may arise between mothers and embryos, between siblings, and between maternal and paternal genes within an embryo due to relatedness asymmetries. We performed two experiments to study the effects of polyandry and brood relatedness on offspring growth in a placental fish (Heterandria formosa). Polyandry was beneficial as it increased the probability of pregnancy, possibly to avoid genetic incompatibility. However, females mated to four males produced offspring that had a longer maturation time than those of monandrous females. When within-brood relatedness was manipulated, the size of the newborn offspring decreased with time in low-relatedness treatment, whereas in highly related broods, offspring size was constant. Low within-brood relatedness may lead to less cooperative offspring in terms of resource extraction from the mother, which may lead to impaired development during gestation. Offspring conflict may thus reduce the benefits of polyandry in viviparous species.  相似文献   

3.
In Sauropterygia, a diverse group of Mesozoic marine reptiles, fossil evidence of viviparity (live‐bearing) only exists for Pachypleurosauria and Plesiosauria, and was assumed to also be the case for nothosaurs. Previous studies have successfully applied an extant squamate model to sauropterygian life‐history traits. In extant squamates, oviparity and viviparity are associated with differences in life‐history trait combinations. We establish growth curves for Nothosaurus specimens based on their humeral histology. We then analyse life‐history traits derived from these curves and compare inferred traits to those of modern squamates and pachypleurosaurs to assess their reproduction mode. We show that birth to adult size ratios (i.e. birth size divided by the mother's size) provide good estimates of clutch sizes in extant squamates and in viviparous extinct marine reptiles, but these ratios cannot discriminate viviparous and oviparous squamates. Thus, large ratios do not indicate viviparity in fossil taxa to which the extant squamate model is applicable. Applying differences in birth size, age at maturation, and maximum longevity that are observed between extant viviparous and oviparous squamates to our Nothosaurus sample, we identified 7 out of 24 specimens as being potentially viviparous. Conversely, they suggested oviparity for many nothosaurs but also for many pachypleurosaur samples. Under the assumption that the entire clade Pachypleurosauria was viviparous, the majority of nothosaurs would also have been viviparous as they comprised trait combinations similar to those seen in pachypleurosaurs. Overall, this suggests that within nothosaurs and pachypleurosaurs both reproduction modes existed in different taxa.  相似文献   

4.
Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection.  相似文献   

5.
6.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

7.
8.
9.
Deploying collective antipredator behaviors during periods of increased predation risk is a major determinant of individual fitness for most animal groups. Pea aphids, Acyrthosiphon pisum, which live in aggregations of genetically identical individuals produced via asexual reproduction warn nearby conspecifics of pending attack by secreting a volatile alarm pheromone. This alarm pheromone allows clone‐mates to evade predation by walking away or dropping off the host plant. Here, we test how a single alarm pheromone emission influences colony structure and defensive behavior in this species. Relative to control colonies, groups exposed to alarm pheromone exhibited pronounced escape behavior where many individuals relocated to adjacent leaves on the host plant. Alarm pheromone reception, however, also had subtle instar‐specific effects: The proportion of 1st instars feeding nearest the leaf petiole decreased as these individuals moved to adjacent leaves, while the proportion of 2nd–3rd instars feeding nearest the leaf petiole remained constant. Fourth instars also dispersed to neighboring leaves after pheromone exposure. Lastly, alarm pheromone reception caused maternal aphids to alter their preferred feeding sites in a genotype‐specific manner: Maternal aphids of the green genotype fed further from the petiole, while maternal aphids of the pink genotype fed closer to the petiole. Together, our results suggest that aphid colony responses to alarm pheromone constitute a diversity of nuanced instar‐ and genotype‐specific effects. These behavioral responses can dramatically change the spatial organization of colonies and their collective defensive behavior.  相似文献   

10.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

11.
We used a recent passerine phylogeny and comparative method to evaluate the macroevolution of body and egg mass, incubation and fledging periods, time to independence and time with parents of the main passerine lineages. We hypothesised that passerine reproductive traits are affected by adaptation to both past and present environmental factors and phenotypic attributes such as body mass. Our results suggest that the evolution of body and egg mass, time to independence, incubation and fledging times are affected by strong phylogenetic inertia and that these breeding traits are all affected by body mass. Time with parents, where major lineages exhibit their own fixed optima and body mass does not have an effect, and clutch size which is affected by body mass and additionally by climate regimes, do not exhibit any phylogenetic inertia.  相似文献   

12.
Nematophagous fungi can trap and capture nematodes and other small invertebrates. This unique ability has made them ideal organisms from which to develop biological control agents against plant‐ and animal‐parasitic nematodes. However, effective application of biocontrol agents in the field requires a comprehensive understanding about the ecology and population genetics of the nematophagous fungi in natural environments. Here, we genotyped 228 strains of the nematode‐trapping fungus Arthrobotrys oligospora using 12 single nucleotide polymorphic markers located on eight random DNA fragments. The strains were from different ecological niches and geographical regions from China. Our analyses identified that ecological niche separations contributed significantly, whereas geographic separation contributed relatively little to the overall genetic variation in our samples of A. oligospora. Interestingly, populations from stressful environments seemed to be more variable and showed more evidence for recombination than those from benign environments at the same geographic areas. We discussed the implications of our results to the conservation and biocontrol application of A. oligospora in agriculture and forestry.  相似文献   

13.
  1. Population responses to extrinsic mortality can yield no change in the number of survivors (compensation) or an increase in the number of survivors (overcompensation) when the population is regulated by negative density‐dependence. This intriguing response has been the subject of theoretical studies, but few experiments have explored how the source of extrinsic mortality affects the response.
  2. This study tests abilities of three functionally diverse predators, alone and combined, to induce (over)compensation of a prey population. Larval Aedes aegypti (Diptera: Culicidae) were exposed to predation by Mesocyclops longisetus (Crustacea: Copepoda), Anopheles barberi (Diptera: Culicidae), Corethrella appendiculata (Diptera: Corethrellidae), all three in a substitutive design, or no predation.
  3. Predator treatment had no significant effect on the total number of adult survivors, nor on numbers of surviving males or females. The female development rate and a composite index of performance (r′) were greater with predation relative to no‐predator control. No differences were detected between diverse and single‐species predator treatments.
  4. Sensitivity analyses indicated predation effects on the number of female adults produced, despite not being affected significantly, was the largest contributing factor to significant treatment effects on the demographic index r′. While predation did not significantly increase the production of adults, it did release survivors from density‐dependent effects sufficiently to increase population performance. This study provides an empirical test of mechanisms by which predation may yield positive mortality effects on victim populations, a phenomenon predicted to occur across many taxa and food webs.
  相似文献   

14.
15.
Spatial variation in pathogen‐mediated selection is predicted to influence the evolutionary trajectory of host populations and lead to spatial variation in their immunogenetic composition. However, to date few studies have been able to directly link small‐scale spatial variation in infection risk to host immune gene evolution in natural, nonhuman populations. Here, we use a natural rodent–Borrelia system to test for associations between landscape‐level spatial variation in Borrelia infection risk along replicated elevational gradients in the Swiss Alps and Toll‐like receptor 2 (TLR2) evolution, a candidate gene for Borrelia resistance, across bank vole (Myodes glareolus) populations. We found that Borrelia infection risk (i.e., the product of Borrelia prevalence in questing ticks and the average tick load of voles at a sampling site) was spatially variable and significantly negatively associated with elevation. Across sampling sites, Borrelia prevalence in bank voles was significantly positively associated with Borrelia infection risk along the elevational clines. We observed a significant association between naturally occurring TLR2 polymorphisms in hosts and their Borrelia infection status. The TLR2 variant associated with a reduced likelihood of Borrelia infection was most common in rodent populations at lower elevations that face a high Borrelia infection risk, and its frequency changed in accordance with the change in Borrelia infection risk along the elevational clines. These results suggest that small‐scale spatial variation in parasite‐mediated selection affects the immunogenetic composition of natural host populations, providing a striking example that the microbial environment shapes the evolution of the host's immune system in the wild.  相似文献   

16.
Most tropical booby species complete breeding foraging trips within daylight hours, thus avoiding nights at sea. Nazca Boobies Sula granti are unusual in this respect, frequently spending one or more nights away from the nest. We used GPS dataloggers, time‐depth recorders, and changes in body weight to characterize foraging trips and to evaluate potential influences on the decisions of 64 adult Nazca Boobies to spend a night at sea, or to return to their chicks on Isla Española, Galápagos, in daylight hours. The tagged birds foraged east of Isla Española, undertaking both single‐day (2–15 h, 67% of trips) and overnight trips (28 h–7.2 days, 33%), and executing 1–19 foraging plunge‐dives per single‐day trip. Birds might forage longer if they are in nutritional stress when they depart, but body weight at departure was not correlated with trip length. Birds might be expected to return from longer trips with more prey for young, but they returned from single‐day and overnight trips with similar body weights, consistent with previous indications that Nazca Boobies forage until accumulating a target value of prey weight. Birds with a lower dive frequency during the first 5 h of a trip were more likely to spend the night at sea, suggesting that they might choose to spend the night at sea if prey capture success was low. At night, birds almost never dived and spent most of their time resting on the water’s surface (11.8–12.1 h, > 99% of the time between civil sunset and civil dawn). Thus, the night is an unproductive time spent among subsurface predators under low illumination. The birds’ webbed feet provided evidence of this risk: 24% of birds were missing > 25% of their foot tissue, probably due to attacks by predatory fish, and the amount of foot tissue lost increased with age, consistent with a cumulative risk across the lifespan. In contrast, other tropical boobies (Blue‐footed Sula nebouxii and Brown Boobies Sula leucogaster), which do not spend the night on the water, showed no such damage. These results suggest that chick‐rearing Nazca Boobies accept nocturnal predation risk on occasions of low prey encounter during a foraging trip’s first day.  相似文献   

17.
Seed (egg) banking is a common bet‐hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene‐for‐gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching‐allele interaction, both hosts’ genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host–parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet‐hedging strategy.  相似文献   

18.
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.  相似文献   

19.
Abstract 1. Non‐lethal genetic surveys in insects usually extract DNA from a leg or a piece of wing. Although preferable to lethal sampling, little is known about the effect of leg/wing non‐lethal sampling on fitness‐related traits. 2. Graellsia isabelae (Graells, 1849) is a European moth protected by the Habitats Directive and the Bern Convention. Conservation genetics surveys on this species should therefore use non‐lethal sampling. 3. The present study aimed to (1) quantify the effects of both leg and hind‐wing tail sampling on survivorship and reproductive behaviour of adult males and females, and (2) assess the quality and quantity of DNA obtained from those tissues. 4. Both hind‐wing tails and mid‐legs proved to be good sources of high quality nuclear and mitochondrial DNA. DNA concentration was significantly higher when extracted from a large (130 mm2) piece of the hind‐wing tails than from about half of the mid‐leg. Using mark–release–recapture experiments with adults, it was found that neither mid‐leg nor hind‐wing tail sampling significantly reduced male survivorship or total number of matings. However, although mid‐leg sampling did not significantly affect female survivorship, it had a negative effect on female mating success. 5. Wing‐tail clipping on males appeared to be the best non‐lethal sampling procedure for G. isabelae. It is a fast procedure, similar to natural wing impairment, and did not significantly affect survival or mating behaviour.  相似文献   

20.
1. The increase of species richness with the area of the habitat sampled, that is the species–area relationship, and its temporal analogue, the species–time relationship (STR), are among the few general laws in ecology with strong conservation implications. However, these two scale‐dependent phenomena have rarely been considered together in biodiversity assessment, especially in freshwater systems. 2. We examined how the spatial scale of sampling influences STRs for a Central‐European stream fish assemblage (second‐order Bernecei stream, Hungary) using field survey data in two simulation‐based experiments. 3. In experiment one, we examined how increasing the number of channel units, such as riffles and pools (13 altogether), and the number of field surveys involved in the analyses (12 sampling occasions during 3 years), influence species richness. Complete nested curves were constructed to quantify how many species one observes in the community on average for a given number of sampling occasions at a given spatial scale. 4. In experiment two, we examined STRs for the Bernecei fish assemblage from a landscape perspective. Here, we evaluated a 10‐year reach level data set (2000–09) for the Bernecei stream and its recipient watercourse (third‐order Kemence stream) to complement results on experiment one and to explore the mechanisms behind the observed patterns in more detail. 5. Experiment one indicated the strong influence of the spatial scale of sampling on the accumulation of species richness, although time clearly had an additional effect. The simulation methodology advocated here helped to estimate the number of species in a diverse combination of spatial and temporal scale and, therefore, to determine how different scale combinations influence sampling sufficiency. 6. Experiment two revealed differences in STRs between the upstream (Bernecei) and downstream (Kemence) sites, with steeper curves for the downstream site. Equations of STR curves were within the range observed in other studies, predominantly from terrestrial systems. Assemblage composition data suggested that extinction–colonisation dynamics of rare, non‐resident (i.e. satellite) species influenced patterns in STRs. 7. Our results highlight that the determination of species richness can benefit from the joint consideration of spatial and temporal scales in biodiversity inventory surveys. Additionally, we reveal how our randomisation‐based methodology may help to quantify the scale dependency of diversity components (α, β, γ) in both space and time, which have critical importance in the applied context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号