首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraspeckles are mammal-specific membraneless nuclear bodies that participate in various biological processes. NONO, a central paraspeckle component, has been shown to play pivotal roles in DNA double-strand breaks (DSB) repair, whereas its underlying mechanism needs to be further disclosed. Here, using co-immunoprecipitation and mass spectrum, we identified ribosomal protein P0 (RPLP0) as a DSB-induced NONO-binding protein; RPLP0 binds to the RRM1 and RRM2 domains of NONO. Similar to NONO, RPLP0 enhances non-homologous end joining-mediated DSB repair, which was ascribed to a ribosome-independent manner. Interestingly, paraspeckles were induced as early as 15 min after irradiation; it further recruited nuclear RPLP0 to enhance its interaction with NONO. Radiation-induced NONO/RPLP0 complex subsequently anchored at the damaged DNA and increased the autophosphorylation of DNA-PK at Thr2609, thereby enhancing DSB repair. Consistently, in vivo and in vitro experiments showed that depletion of NONO sensitizes tumor cells to radiation. For patients with locally advanced rectal cancer, NONO expression was remarkably increased in tumor tissues and correlated with a poor response to radiochemotherapy. Our findings suggest a pivotal role of radiation-induced paraspeckles in DNA repair and tumor radioresistance, and provide a new insight into the ribosome-independent function of ribosomal proteins.Subject terms: Oncogenes, DNA damage response  相似文献   

2.
3.
NonO蛋白     
NonO蛋白能与DNA、RNA以及多种蛋白质相互作用,参与多种生物学事件:DNA的损伤修复、pre.mRNA的剪接、转录调控、核RNA滞留和cAMP调节途径等,并且该蛋白与恶性黑色素瘤、乳突状’肾细胞癌、前列腺癌以及结肠癌等多种癌症的发生密切相关,因此对该蛋白的研究具有非常重要的生物学意义。本文对NonO蛋白的结构、功能及其与癌症的关系等方面的研究现状进行简要的概述。  相似文献   

4.
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2–4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal.  相似文献   

5.
Accumulated evidence shows that OGT-mediated O-GlcNAcylation plays an important role in response to DNA damage repair. However, it is unclear if the “eraser” O-GlcNAcase (OGA) participates in this cellular process. Here, we examined the molecular mechanisms and biological functions of OGA in DNA damage repair, and found that OGA was recruited to the sites of DNA damage and mediated deglycosylation following DNA damage. The recruitment of OGA to DNA lesions is mediated by O-GlcNAcylation events. Moreover, we have dissected OGA using deletion mutants and found that C-terminal truncated OGA including the pseudo HAT domain was required for the recruitment of OGA to DNA lesions. Using unbiased protein affinity purification, we found that the pseudo HAT domain was associated with DNA repair factors including NONO and the Ku70/80 complex. Following DNA damage, both NONO and the Ku70/80 complex were O-GlcNAcylated by OGT. The pseudo HAT domain was required to recognize NONO and the Ku70/80 complex for their deglycosylation. Suppression of the deglycosylation prolonged the retention of NONO at DNA lesions and delayed NONO degradation on the chromatin, which impaired non-homologus end joining (NHEJ). Collectively, our study reveals that OGA-mediated deglycosylation plays a key role in DNA damage repair.Subject terms: DNA damage and repair, Glycosylation  相似文献   

6.
7.
The DNA damage response (DDR) is a complex signaling network that is induced by DNA lesions and vigorously activated by double strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which phosphorylates key players in its various branches. SFPQ (PSF) and NONO (p54) are nuclear proteins that interact with each other and have diverse roles in nucleic acids metabolism. The SFPQ/NONO heterodimer was previously found to enhance DNA strand break rejoining in vitro. Our attention was drawn to these two proteins as they interact with the nuclear matrix protein Matrin 3 (MATR3), which we found to be a novel ATM target. We asked whether SFPQ and NONO too are involved in the DSB response. Proteins that function at the early phase of this response are often recruited to the damaged sites. We observed rapid recruitment of SFPQ/NONO to sites of DNA damage induced by laser microbeam. In MATR3 knockdown cells SFPQ/NONO retention at DNA damage sites was prolonged. SFPQ and MATR3 depletion led to abnormal accumulation of cells at the S-phase of the cell cycle following treatment with the radiomimetic chemical neocarzinostatin. Notably, proteins involved in DSB repair via nonhomologous end-joining co-immunoprecipitated with NONO; SFPQ depletion delayed DSB repair. Collectively the data suggest that SFPQ, NONO and MATR3 are involved in the early stage of the DSB response, setting the scene for DSB repair.  相似文献   

8.
9.
The role of Non‐POU‐domain‐containing octamer‐binding protein (NONO) in the formation and development of angiotensin II (Ang II)‐induced abdominal aortic aneurysm (AAA) in apolipoprotein E‐knockout (ApoE?/?) mice is still unknown. In Part I, the protein level of NONO was suggestively greater in the AAA tissues compare to that in the normal abdominal aortas. In Part II, 20 ApoE?/? male mice were used to examine the transfection efficiency of lentivirus by detecting GFP fluorescence. In Part III, mice were arbitrarily separated into two groups: one was the control group without Ang II infusion, and another was the Ang II group. Mice treated with Ang II were further randomly divided into three groups to receive the same volume of physiological saline (NT group), sh‐negative control lentivirus (sh‐NC group) and si‐NONO lentivirus (sh‐NONO group). NONO silencing suggestively reduced the occurrence of AAA and abdominal aortic diameter. Compare to the NT group, NONO silencing markedly augmented the content of collagen and vascular smooth muscle cells but reduced macrophage infiltration in AAA. In addition, knockdown of NONO also increased the expression of prolyl‐4‐hydroxylase α1, whereas also decreased the levels of collagen degradation and pro‐inflammatory cytokines in AAA. We detected the interface of NONO and NF‐κB p65, and found that NONO silencing inhibited both the nuclear translocation and the phosphorylation levels of NF‐κB p65. Silencing of NONO prevented Ang II‐influenced AAA in ApoE?/? mice through increasing collagen deposition and inhibiting inflammation. The mechanism may be that silencing of NONO decreases the nuclear translocation and phosphorylation of NF‐κB.  相似文献   

10.
11.
Ubiquitin-specific protease 11 (USP11) has been implicated in the regulation of DNA repair, apoptosis, signal transduction and cell cycle. It belongs to a USP subfamily of deubiquitinases. Although previous research has shown that USP11 overexpression is frequently found in melanoma and is correlated with a poor prognosis, the potential molecular mechanism of USP11 in melanoma remains indefinitive. Here, we report that USP11 and NONO colocalize and interact with each other in the nucleus of melanoma cells. As a result, the knockdown of USP11 decreases NONO levels. Whereas, overexpression of USP11 increases NONO levels in a dose-dependent manner. Furthermore, we reveal that USP11 protects NONO protein from proteasome-mediated degradation by removing poly-ubiquitin chains conjugated onto NONO. Functionally, USP11 mediated melanoma cell proliferation via the regulation of NONO levels because ablation of USP11 inhibits the proliferation which could be rescued by ectopic expression of NONO protein. Moreover, a significant positive correlation between USP11 and NONO concentrations was found in clinical melanoma samples. Collectively, these results demonstrate that USP11 is a new deubiquitinase of NONO and that the signalling axis of USP11-NONO is significantly involved in melanoma proliferation.  相似文献   

12.
After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.  相似文献   

13.
14.
15.
16.
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号