首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Social insect colonies can be seen as a distinct form of biological organisation because they function as superorganisms. Understanding how natural selection acts on the emergence and maintenance of these colonies remains a major question in evolutionary biology and ecology. Here, we explore this by using multi‐type branching processes to calculate the basic reproductive ratios and the extinction probabilities for solitary vs. eusocial reproductive strategies. We find that eusociality, albeit being hugely successful once established, is generally less stable than solitary reproduction unless large demographic advantages of eusociality arise for small colony sizes. We also demonstrate how such demographic constraints can be overcome by the presence of ecological niches that strongly favour eusociality. Our results characterise the risk‐return trade‐offs between solitary and eusocial reproduction, and help to explain why eusociality is taxonomically rare: eusociality is a high‐risk, high‐reward strategy, whereas solitary reproduction is more conservative.  相似文献   

2.
Mate choice by females may be influenced by both advertizing traits of males, and behaviour of other females. Here, a simple genetic and behavioural model studies the advantages of mate‐choice copying. From a genetic point of view, a female preferring to copy others’ mate choice adopts a prudent strategy, because her offspring will inherit the same alleles from their father as the other young in the population. The model predicts that a female should copy others’ mate‐choice, unless she encounters a relatively more attractive male than the one she has observed mating, and the attractiveness of the male reflects his genotype. For low or moderate reliability of male signalling, mate‐copying is always predicted, even if the newcoming male is more attractive than the first male. This effect is attenuated, however, when the number of females that have already chosen the first male increases.  相似文献   

3.
Most studies of behaviour examine traits whose proximate causes include sensory input and neural decision-making, but conflict and collaboration in biological systems began long before brains or sensory systems evolved. Many behaviours result from non-neural mechanisms such as direct physical contact between recognition proteins or modifications of development that coincide with altered behaviour. These simple molecular mechanisms form the basis of important biological functions and can enact organismal interactions that are as subtle, strategic and interesting as any. The genetic changes that underlie divergent molecular behaviours are often targets of selection, indicating that their functional variation has important fitness consequences. These behaviours evolve by discrete units of quantifiable phenotypic effect (amino acid and regulatory mutations, often by successive mutations of the same gene), so the role of selection in shaping evolutionary change can be evaluated on the scale at which heritable phenotypic variation originates. We describe experimental strategies for finding genes that underlie biochemical and developmental alterations of behaviour, survey the existing literature highlighting cases where the simplicity of molecular behaviours has allowed insight to the evolutionary process and discuss the utility of a genetic knowledge of the sources and spectrum of phenotypic variation for a deeper understanding of how genetic and phenotypic architectures evolve.  相似文献   

4.
Matrilineal kinship organization is a human social system that emphasizes interactions between matrilineal kin, i.e. individuals related only through females. The ‘matrilineal puzzle’ refers to the potential for tension characteristic of this social system, owing to the conflict between the interests and responsibilities of men in their roles as brother/uncle versus husband/father. From an evolutionary perspective, matrilineal kinship organization is puzzling when it diverts investment of resources from the individuals who provide the potentially highest reproductive returns. I use a game-theoretic framework to investigate a particular form of matrilineal inheritance—the transfer of property from a maternal uncle to a sororal nephew. The analysis reveals two mechanisms that may make this strategy a stable evolutionary outcome. First, a polygynous male has multiple wives, and hence multiple brothers-in-law; with matrilineal inheritance, each additional brother-in-law may transfer resources to the male''s wife''s offspring, thus potentially contributing to the male''s inclusive fitness. Second, the husband of a polyandrous female is effectively ‘sharing’ paternity with other men; depending on the number of husbands, he may be better off investing in his sister''s offspring. I conclude by discussing how these results address the challenges posed by the occurrence of matrilineal kinship organization.  相似文献   

5.
We present a novel perspective on life‐history evolution that combines recent theoretical advances in fluctuating density‐dependent selection with the notion of pace‐of‐life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short‐lived, bold, aggressive and highly dispersive ‘fast’ types at one end of the POLS to the less fecund, long‐lived, cautious, shy, plastic and socially responsive ‘slow’ types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco‐evolutionary dynamics with population density – a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density‐dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density‐dependent selection. Phenotypic plasticity and/or genetic (co‐)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density‐dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life‐history evolution and thus our ability to predict natural population dynamics.  相似文献   

6.
Is reproduction by adult female insects limited by the finite time available to locate hosts (time limitation) or by the finite supply of eggs (egg limitation)? An influential model predicted that stochasticity in reproductive opportunity favors elevated fecundity, rendering egg limitation sufficiently rare that its importance would be greatly diminished. Here, I use models to explore how stochasticity shapes fecundity, the likelihood of egg limitation, and the ecological importance of egg limitation. The models make three predictions. First, whereas spatially stochastic environments favor increased fecundity, temporally stochastic environments favor increases, decreases, or intermediate maxima in fecundity, depending on egg costs. Second, even when spatially or temporally stochastic environments favor life histories with less‐frequent egg limitation, stochasticity still increases the proportion of all eggs laid in the population that is laid by females destined to become egg limited. This counterintuitive result is explained by noting that stochasticity concentrates reproduction in the hands of a few females that are likely to become egg limited. Third, spatially or temporally stochastic environments amplify the constraints imposed by time and eggs on total reproduction by the population. I conclude that both egg and time constraints are fundamental in shaping insect reproductive behavior and population dynamics in stochastic environments.  相似文献   

7.
Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner''s Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution.  相似文献   

8.
In the face of rapid environmental and cultural change, long‐term ecological research (LTER) and social‐ecological research (LTSER) are more important than ever. LTER contributes disproportionately to ecology and policy, evidenced by the greater proportion of LTER in higher impact journals and the disproportionate representation of LTER in reports informing policymaking. Historical evidence has played a significant role in restoration projects and it will continue to guide restoration into the future, but its use is often hampered by lack of information, leading to considerable uncertainties. By facilitating the storage and retrieval of historical information, LTSER will prove valuable for future restoration.  相似文献   

9.
10.
11.
Phenotypic plasticity can enhance a species’ ability to persist in a new and stressful environment, so that reaction norms are expected to evolve as organisms encounter novel environments. Biological invasions provide a robust system to investigate such changes. We measured the rates of early growth and development in tadpoles of invasive cane toads (Rhinella marina) in Australia, from a range of locations and at different larval densities. Populations in long‐colonized areas have had the opportunity to adapt to local conditions, whereas at the expanding range edge, the invader is likely to encounter challenges that are both novel and unpredictable. We thus expected invasion‐vanguard populations to exhibit less phenotypic plasticity than range‐core populations. Compared to clutches from long‐colonized areas, clutches from the invasion front were indeed less plastic (i.e. rates of larval growth and development were less sensitive to density). In contrast, those rates were highly variable in clutches from the invasion front, even among siblings from the same clutch under standard conditions. Clutches with highly variable rates of growth and development under constant conditions had lower phenotypic plasticity, suggesting a trade‐off between these two strategies. Although these results reveal a strong pattern, further investigation is needed to determine whether these different developmental strategies are adaptive (i.e. adaptive phenotypic plasticity vs. bet‐hedging) or instead are driven by geographic variation in genetic quality or parental effects.  相似文献   

12.
Forty years ago, the ‘life‐dinner principle’ was proposed as an example of an asymmetry that may lead prey species to experience stronger selection than their predators, thus accounting for the high frequency with which prey escape alive from interaction with a predator. This principle remains an influential concept in the scientific literature, despite several works suggesting that the concept relies on many under‐appreciated assumptions and does not apply as generally as was initially proposed. Here, we present a novel model describing a very different asymmetry to that proposed in the life‐dinner principle, but one that could apply broadly. We argue that asymmetries between the relative costs and benefits to predators and prey of selecting a risky behaviour during an extended predator–prey encounter could lead to an enhanced likelihood of escape for the prey. Any resulting advantage to prey depends upon there being a behaviour or choice that introduces some inherent danger to both predator and prey if they adopt it, but which if the prey adopts the predator must match in order to have a chance of successful predation. We suggest that the circumstances indicated by our model could apply broadly across diverse taxa, including both risky spatial or behavioural choices.  相似文献   

13.
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross‐fostered eggs originating from single‐queen (= monogynous) or multiple‐queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.  相似文献   

14.
The lizard genus Egernia has been suggested as an excellent model system for examining the evolution of sociality as it exhibits considerable diversity in social organization both between and within species. To date the majority of work examining the factors responsible for the evolution of sociality within Egernia has advocated a broad scale approach; identifying the social structure of specific species or populations and comparing the degree of sociality between them. However, we argue that significant advancements could also be gained by examining variation in social strategies within populations. Here we integrate a detailed, 3‐year, field‐based examination of social spacing and juvenile dispersal with molecular analyses of paternity to determine the social and mating system of a Tasmanian population of White's skink (Egernia whitii). We show that E. whitii live in small stable family groups consisting of an adult male, his female partner(s), as well as juvenile or sub‐adults individuals. In addition, while the mating system is characterized by considerable genetic monogamy, extra‐pair fertilizations are relatively common, with 34% of litters containing offspring sired by males from outside the social group. We also show that traits related to social organization (social group composition, group size, stability and the level of extra‐pair paternity) vary both between and within individuals. We suggest that ecological factors, such as habitat saturation, quality and availability, play a key role in maintaining between individual variation in social strategies, and that examining these individual level processes will allow us to more clearly understand variation in sociality among species.  相似文献   

15.
Amyloid‐β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single‐molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid‐β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar‐to‐picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single‐molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ‐induced toxicity, is included in hopes of inspiring future development in this area of research.  相似文献   

16.
Social insects exhibit complex learning and memory mechanisms while foraging. Vespula germanica (Fab.) (Hymenoptera: Vespidae) is an invasive social wasp that frequently forages on undepleted food sources, making several flights between the resource and the nest. Previous studies have shown that during this relocating behavior, wasps learn to associate food with a certain site, and can recall this association 1 h later. In this work, we evaluated whether this wasp species is capable of retrieving an established association after 24 h. For this purpose, we trained free flying individuals to collect proteinaceous food from an experimental plate (feeder) located in an experimental array. A total of 150 individuals were allowed 2, 4, or 8 visits. After the training phase, the array was removed and set up again 24 h later, but this time a second baited plate was placed opposite to the first. After 24 h we recorded the rate of wasps that returned to the experimental area and those which collected food from the previously learned feeding station or the nonlearned one. During the testing phase, we observed that a low rate of wasps trained with 2 collecting visits returned to the experimental area (22%), whereas the rate of returning wasps trained with 4 or 8 collecting visits was higher (51% and 41%, respectively). Moreover, wasps trained with 8 feeding visits collected food from the previously learned feeding station at a higher rate than those that did from the nonlearned one. In contrast, wasps trained 2 or 4 times chose both feeding stations at a similar rate. Thus, significantly more wasps returned to the previously learned feeding station after 8 repeated foraging flights but not after only 2 or 4 visits. This is the first report that demonstrates the existence of long‐term spatial memory in V. germanica wasps.  相似文献   

17.
The construct of multispecies anthropology has helped explain some of the ways through which humans develop sensory and embodied connectedness with the more‐than‐human. Yet there is a need to fully comprehend how such connectedness leads to the discovery of the inner self. Through an ethnographic study carried out with rural South Punjabi pigeon flyers in Pakistan between 2008 and 2018, this paper argues that companionship with pigeons allows people to generate a meaningful relationship with their animals, explore their inner emotions and achieve a deeper understanding of the self. This paper takes inspiration from Donna Haraway's critique of Jacques Derrida's cat encounter, and philosophical thoughts of a 12th‐century Muslim mystic poet, Farid ud‐Din Attar, to examine how becoming‐with pigeons enables the flyers to structure their lifeworlds, develop entrenched companionship and shape their social choices to achieve wellbeing despite everyday social troubles and emotional anxieties.  相似文献   

18.
19.
The sequestration of crucial cellular proteins into insoluble aggregates formed by the polypeptides containing expanded polyglutamine tracts has been proposed to be the key mechanism responsible for the abnormal cell functioning in the so‐called polyglutamine diseases. To evaluate to what extent the ability of polyglutamine sequences to recruit other proteins into the intracellular aggregates depends on the composition of the aggregating peptide, we analysed the co‐aggregation properties of the N‐terminal fragment of huntingtin fused with unrelated non‐aggregating and/or self‐aggregating peptides. We show that the ability of the mutated N‐terminal huntingtin fragment to sequester non‐related proteins can be significantly increased by fusion with the non‐aggregating reporter protein [GFP (green fluorescence protein)]. By contrast, fusion with the self‐aggregating C‐terminal fragment of the CFTR (cystic fibrosis transmembrane conductance regulator) dramatically reduces the sequestration of related non‐fused huntingtin fragments. We also demonstrate that the co‐aggregation of different non‐fused N‐terminal huntingtin fragments depends on their length, with long fragments of the wild‐type huntingtin not only excluded from the nuclear inclusions, but also very inefficiently sequestered into the cytoplasmic aggregates formed by the short fragments of mutant protein. Additionally, our results suggest that atypical intracellular aggregation patterns, which include unusual distribution and/or morphology of protein aggregates, are associated with altered ability of accumulating proteins to co‐aggregate with other peptides.  相似文献   

20.
The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans‐species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen‐mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号