首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traditionally, marine ecosystem structure was thought to be bottom‐up controlled. In recent years, a number of studies have highlighted the importance of top‐down regulation. Evidence is accumulating that the type of trophic forcing varies temporally and spatially, and an integrated view – considering the interplay of both types of control – is emerging. Correlations between time series spanning several decades of the abundances of adjacent trophic levels are conventionally used to assess the type of control: bottom‐up if positive or top‐down if this is negative. This approach implies averaging periods which might show time‐varying dynamics and therefore can hide part of this temporal variability. Using spatially referenced plankton information extracted from the Continuous Plankton Recorder, this study addresses the potential dynamic character of the trophic structure at the planktonic level in the North Sea by assessing its variation over both temporal and spatial scales. Our results show that until the early‐1970s a bottom‐up control characterized the base of the food web across the whole North Sea, with diatoms having a positive and homogeneous effect on zooplankton filter‐feeders. Afterwards, different regional trophic dynamics were observed, in particular a negative relationship between total phytoplankton and zooplankton was detected off the west coast of Norway and the Skagerrak as opposed to a positive one in the southern reaches. Our results suggest that after the early 1970s diatoms remained the main food source for zooplankton filter‐feeders east of Orkney–Shetland and off Scotland, while in the east, from the Norwegian Trench to the German Bight, filter‐feeders were mainly sustained by dinoflagellates.  相似文献   

2.
1. Two enclosure experiments were carried out in Laguna Bufeos, a neotropical várzea lake located in the floodplain of River Ichilo (Bolivia). The experiments aimed (i) to assess the relative importance of bottom‐up and top‐down control on the plankton community, (ii) to assess the relative impact of direct and indirect effects of planktivorous fish on the zooplankton, and (iii) to attempt to identify the mechanisms responsible for these effects. 2. During the first experiment, bottom‐up control seemed to dominate the planktonic food web. Compared with fishless enclosures, oxygen concentrations, chlorophyll a levels and the population densities of all cladoceran zooplankton taxa increased in enclosures with fish. Birth rates of Moina minuta, the dominant taxon, were substantially higher in the presence than in the absence of fish, whereas death rates did not differ between treatments. These results are the first to suggest that the positive effects of fish on crustacean zooplankton via effects on nutrient cycling and the enhancement of primary production can compensate for losses because of fish‐related mortality. 3. During the second experiment, the direction of control appeared to vary between trophic levels: the phytoplankton appeared to be bottom‐up controlled whereas the zooplankton was mainly top‐down controlled. Chlorophyll a concentrations were enhanced by both fish and nutrient additions. The majority of the zooplankton taxa were reduced by the presence of fish. Birth rates of most cladoceran taxa did not differ between treatments, whereas death rates were higher in the enclosures with fish than in the fishless enclosures. Bosminopsis deitersi reached higher densities in the presence of fish, probably because of a release from predation by Chaoborus. 4. We convincingly showed strong deviations from trophic cascade‐based expectations, supporting the idea that trophic cascades may be weak in tropical lakes.  相似文献   

3.
Increases in phytoplankton biomass have been widely observed over the past decades, even in lakes experiencing nutrient reduction. However, the mechanisms giving rise to this trend remain unclear. Here, we unveil the potential mechanisms through quantifying the relative contribution of bottom–up versus top–down control in determining biomasses of phytoplankton assemblages in Lake Geneva. Specifically, we apply nonlinear time series analysis, convergent cross mapping (CCM), to decipher the degree of bottom–up versus top–down control among phytoplankton assemblages via quantifying 1) causal links between environmental factors and various phytoplankton assemblages and 2) the relative importance of bottom–up, top–down, and environmental effects. We show that the recent increase in total phytoplankton biomass, albeit with phosphorus reduction, was mainly caused by a particular phytoplankton assemblage which was better adapted to the re‐oligotrophicated environment characterized by relatively low phosphorus concentrations and warm water temperature, and poorly controlled by zooplankton grazing. Our findings suggest that zooplankton act as a critical driver of phytoplankton biomass and strongly impact the dynamics of recovery from eutrophication. Therefore, our phytoplankton assemblage approach in combination with causal identification of top–down versus bottom–up controls provides insights into the reason why phytoplankton biomass may increase in lakes undergoing phosphorus reduction.  相似文献   

4.
5.
The degree to which ecosystems are regulated through bottom‐up, top‐down, or direct physical processes represents a long‐standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom‐up and top‐down forcing has been shown to vary over spatio‐temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom‐up regulated. However, it remains unknown to what extent top‐down regulation occurs, or whether the relative importance of bottom‐up and top‐down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom‐up, top‐down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long‐term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom‐up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom‐up and top‐down forcing, analogous to wasp‐waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom‐up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean‐atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño.  相似文献   

6.
Productivity and trophic structure of aquatic ecosystems result from a complex interplay of bottom‐up and top‐down forces that operate across benthic and pelagic food web compartments. Projected global changes urge the question how this interplay will be affected by browning (increasing input of terrestrial dissolved organic matter), nutrient enrichment and warming. We explored this with a process‐based model of a shallow lake food web consisting of benthic and pelagic components (abiotic resources, primary producers, grazers, carnivores), and compared model expectations with the results of a browning and warming experiment in nutrient‐poor ponds harboring a boreal lake community. Under low nutrient conditions, the model makes three major predictions. (a) Browning reduces light and increases nutrient supply; this decreases benthic and increases pelagic production, gradually shifting productivity from the benthic to the pelagic habitat. (b) Because of active habitat choice, fish exert top‐down control on grazers and benefit primary producers primarily in the more productive of the two habitats. (c) Warming relaxes top‐down control of grazers by fish and decreases primary producer biomass, but effects of warming are generally small compared to effects of browning and nutrient supply. Experimental results were consistent with most model predictions for browning: light penetration, benthic algal production, and zoobenthos biomass decreased, and pelagic nutrients and pelagic algal production increased with browning. Also consistent with expectations, warming had negative effects on benthic and pelagic algal biomass and weak effects on algal production and zoobenthos and zooplankton biomass. Inconsistent with expectations, browning had no effect on zooplankton and warming effects on fish depended on browning. The model is applicable also to nutrient‐rich systems, and we propose that it is a useful tool for the exploration of the consequences of different climate change scenarios for productivity and food web dynamics in shallow lakes, the worldwide most common lake type.  相似文献   

7.
1. Mesocosm experiments were carried out to examine the relative importance of top down (fish predation) and bottom up (nutrient addition) controls on phytoplankton abundance in a small shallow lake, Little Mere, U.K., in 1998 and 1999. These experiments were part of a series at six sites across Europe. 2. In the 1998 experiment, top‐down processes (through grazing of large Cladocera) were important in determining phytoplankton biomass. The lack of plant refugia for zooplankton was probably important in causing an increasing chlorophyll a concentration even at intermediate fish density. Little Mere normally has abundant macrophytes but they failed to develop substantially during both years. Bottom‐up control was not important in 1998, most probably because of high background nutrient concentrations, as a result of nutrient release from the sediments. 3. In 1999 neither top‐down nor bottom‐up processes were significant in determining phytoplankton biomass. Large cladoceran grazers were absent even in the fish‐free enclosures, probably because dominance of cyanobacteria and high phytoplankton biomass made feeding conditions unsuitable. As in 1998, bottom‐up control of phytoplankton was not important, owing to background nutrient concentrations that were even higher in 1999 than in 1998, perhaps because of the warmer, sunnier weather. 4. The differing outcomes of the two experiments in the same lake with similar experimental designs highlight the importance of starting conditions. These conditions in turn depended on overall weather conditions prior to the experiments.  相似文献   

8.
It is well known that human activities, such as harvesting, have had major direct effects on marine ecosystems. However, it is far less acknowledged that human activities in the surroundings might have important effects on marine systems. There is growing evidence suggesting that major reorganization (i.e., a regime shift) is a common feature in the temporal evolution of a marine system. Here we show, and quantify, the interaction of human activities (nutrient upload) with a favourable climate (run‐off) and its contribution to the eutrophication of the Black Sea in the 1980s. Based on virtual analysis of the bottom‐up (eutrophication) vs. top‐down (trophic cascades) effects, we found that an earlier onset of eutrophication could have counteracted the restructuring of the trophic regulation at the base of the food web that resulted from the depletion of top predators in the 1970s. These enhanced bottom‐up effects would, however, not propagate upwards in the food web beyond the zooplankton level. Our simulations identified the removal of apex predators as a key element in terms of loss of resilience that inevitably leads to a reorganization. Once the food web has been truncated, the type and magnitude of interventions on the group replacing the apex predator as the new upper trophic level have no effect in preventing the trophic cascade. By characterizing the tipping point at which increased bottom‐up forcing exactly counteracts the top‐down cascading effects, our results emphasize the importance of a comprehensive analysis that take into account all structuring forces at play (including those beyond the marine system) at a given time.  相似文献   

9.
10.
The relative roles of top‐down (consumer‐driven) and bottom‐up (resource‐driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation‐induced, top‐down trophic forcing have led to a general view that human‐induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top‐down versus bottom‐up forcing and the capacity of human exploitation to instigate top‐down, community‐level effects. Using time‐series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long‐term trophic group population density trends, latitude, and exploitation status over a continental‐scale biogeographic range. Specifically, we amalgamated two long‐term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom‐up driven in tropical systems and top‐down driven in temperate systems. Further, alternating long‐term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top‐down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long‐term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no‐take marine reserves; however, exploitation status did not affect the likelihood of alternating long‐term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top‐down control does not universally vary in this system based on exploitation level.  相似文献   

11.
Approaches to compare the strength of pelagic trophic cascades often use singular sampling programs for measuring trophic variables, thus potentially neglecting the spatial and temporal heterogeneity in the distribution of fish, zooplankton and phytoplankton. Here, we compared the composition of six trophic variables from three trophic levels in a deep oligotrophic lake within temporal (diel and seasonal) and spatial (horizontal and vertical) sampling resolutions. Mean values and ratios between the variables were compared between day and night, in three sampling months, four lake basins, and three water depths. Factor analysis was used to determine abiotic variables which may explain the heterogeneous distribution of the trophic variables. All six trophic variables were strongly heterogeneously distributed between the sampling months and the water depths, whereas horizontal and day–night differences were lower. Distribution of fish, zooplankton and phytoplankton correlated with water temperature and nutrient concentrations. Accordingly, for the use in comparative and meta-analyses, singular sampling programs in deep lakes have to integrate the entire water depth and are best repeated over several seasons. Alternatively, mean water temperature and nutrient concentrations may be used as covariates to diminish the unexplained variance between samples from different lakes.  相似文献   

12.
Most prominent theories of food web dynamics imply the simultaneous action of bottom–up and top–down forces. However, transient bottom‐up effects resulting from resource pulses can lead to sequential shifts in the strength of top–down predator effects. We used a large‐scale field experiment (32 small islands sampled over 5 years) to probe how the frequency and magnitude of pulsed seaweed inputs drives temporal variation in the top–down effects of lizard predators. Short‐term weakening of lizard effects on spiders and plants (the latter via a trophic cascade) were associated with lizard diet shifts, and were more pronounced with larger seaweed inputs. Long‐term strengthening of lizard effects was associated with lizard numerical responses and plant fertilisation. Increased pulse frequency reinforced the strengthening of lizard effects on spiders and plants. These results underscore the temporally variable nature of top–down effects and highlight the role of resource pulses in driving this variation.  相似文献   

13.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

14.
Human impacts such as eutrophication, overexploitation and climate change currently threaten future global food and drinking water supplies. Consequently, it is important that we understand how anthropogenic resource (bottom–up) and consumer (top–down) manipulations affect aquatic food web structure and production. Future climate changes are predicted to increase the inputs of terrestrial dissolved organic carbon to lakes. These carbon subsidies can either increase or decrease total basal production in aquatic food webs, depending on bacterial competition with phytoplankton for nutrients. This study examines the effects of carbon subsidies (bottom–up) on a pelagic community exposed to different levels of top–down predation. We conducted a large scale mesocosm experiment in an oligotrophic clear water lake in northern Sweden, using a natural plankton community exposed to three levels of glucose addition (0, 420 and 2100 μg C l?1 total added glucose) and three levels of young‐of‐the‐year perch Perca fluviatilis density (0, 0.56 and 2 individuals m?3). Bacterioplankton production doubled with glucose addition, but phytoplankton production was unaffected, in contrast to previous studies that have manipulated carbon, nutrients or light simultaneously. This suggests that carbon addition alone is not sufficient to reduce autotrophic production, at least in an oligotrophic lake dominated by mixotrophic phytoplankton. Larval perch grazing did not produce a classical trophic cascade, but substantially altered the species composition of crustacean zooplankton and ciliate trophic levels. Glucose addition increased the biomass of rotifers, thus potentially increasing energy transfer through the heterotrophic pathway, but only when fish were absent. This study illustrates that changes in community structure due to selective feeding by top‐predators can determine the influence of bottom–up carbon subsidies.  相似文献   

15.
Environmental change strongly affects primary productivity of ecosystems via modifying bottom–up and top–down regulation of primary producers. Here we present a novel approach to quantify the relative importance of regulating factors in natural systems over various time scales: we calculated daily effect sizes of major factors affecting phytoplankton growth during the spring bloom period during almost three decades of lake oligotrophication using numerical experiments with a data based simulation model. We show that with oligotrophication the regulation of spring phytoplankton shifts from primarily top–down to bottom–up, and that the changes in regulation are non‐linearly related to the nutrient (phosphorus) concentrations. Our findings indicate that long‐term changes in top–down regulation cannot be understood without considering multiple herbivore taxa, here, microzooplankton (ciliates) and mesozooplankton (daphnids). We further demonstrate that bottom–up and top–down regulation are not independent from each other and that their interaction is time‐scale dependent.  相似文献   

16.
17.
Classical food web theory holds that energy channels are regulated by top‐down control with increasing productivity, arising from within‐channel processes. However, these hypotheses do not consider the existence of parallel energy channels linked by shared resource pools and which can fuel generalist predators, imposing trophic control arising from multi‐channel processes. Using 23 large marine food webs, we show that food web responses to increasing productivity are consistent with the apparent trophic cascade hypothesis (ATCH) – with rising productivity predators derive an increasing fraction of their diet from increasingly productive bottom‐up controlled detritus channels, thereby subsidising predator biomass, and in turn strengthening top‐down control in parallel grazing channels. These results testify to a fundamental role of detritus channels specifically and multi‐channel processes in general in mediating food web response to productivity and demonstrate that the ATCH provides an alternative explanation for classical predictions of top‐down control.  相似文献   

18.
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom‐up and top‐down effects among trophic groups and supported top‐down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom‐up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top‐down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom‐up‐only model.  相似文献   

19.
Top–down effects of herbivores and bottom–up effects of nutrients shape productivity and diversity across ecosystems, yet their single and combined effects on spatial and temporal beta diversity is unknown. We established a field experiment in which the abundance of insect herbivores (top–down) and soil nitrogen (bottom–up) were manipulated over six years in an existing old‐field community. We tracked plant α and β diversity – within plot richness and among plot biodiversity‐ and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom–up factors affected ANPP while top–down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect herbivores did not alter plant richness (α diversity) yet consistently promoted Shannon's evenness, relative to plots where insect herbivores were present. Further, insect herbivores promoted spatial‐temporal β diversity. Overall, we found that the relative importance of top–down and bottom–up controls of plant ANPP, plant α diversity, and composition (β diversity) can vary significantly in magnitude and direction. In addition, their effects varied through time, with bottom–up effects influencing ANPP quickly while the effects of top–down factors emerging only late in the experiment to influence plant community composition via shifts in plant dominance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号