首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
In an ecosystem under simultaneous threat from multiple alien species, one invader may buffer the impact of another. Our surveys on a remote floodplain in the Kimberley region of north western Australia show that invasive chinee apple trees (Ziziphus mauritiana) provide critical refuge habitat for native rodents (pale field rats, Rattus tunneyi). Feral horses (Equus caballus) have trampled most of the remaining floodplain, but are excluded from the area around each chinee apple tree by thorny foliage. Although chinee apple trees constituted <10% of trees along our transects, they represented >50% of trees that harboured rat burrows. The mean number of burrows under each chinee apple tree was twice as high as under most other tree species, and we trapped more than seven times as many rats under chinee apple trees as under other types of trees. The extensive burrow systems under chinee apple trees contained female as well as male rats, whereas we only captured males around the smaller burrow systems under other tree species. Our data suggest that this invasive tree plays a critical role in the persistence of pale field rat populations in this degraded ecosystem, and that managers should maintain these trees (despite their alien origins) at least until feral horses have been removed.  相似文献   

4.
5.
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.  相似文献   

6.
Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi‐arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non‐native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects.  相似文献   

7.
8.
Restoration of postmining substrates to native forest is a standard requirement of resource consents for mine sites located within areas of native forest in New Zealand. Unweathered waste rock presents significant challenges for plant growth, and past research highlights the importance of replacing soil as part of restoration. However, replacing soil with its horizon structure intact or even obtaining sufficient soil for restoration can be a challenge in some situations. In this paper, we describe the results of two trials undertaken at the OceanaGold Ltd. open‐cast gold mine in Reefton to explore the influence of substrate conditions on the growth of native forest seedlings. We show that beech (Nothofagus) seedlings grown on A‐horizon soil grew significantly better than those grown on soil mixed with waste rock, and both grew significantly better than plants grown just on waste rock. In the second trial, we show that bark chips are not a good substitute for soil. These results confirm the importance of having the correct substrate for successful native forest restoration.  相似文献   

9.
10.
11.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

12.
Theories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of Datura stramonium in eight native (Mexico) and 14 non‐native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non‐native populations (atropine: 2.0171 vs. 0.0458 mg/g; scopolamine: 1.004 vs. 0.0488 mg/g, respectively). Selection on alkaloids was negative for atropine and positive for scopolamine concentration in both ranges. However, the effect sizes of selection gradients were only significant in the native range. Our results support the assumption that the reduction of plant defence in the absence of the plant's natural enemies in invasive ranges is driven by natural selection.  相似文献   

13.
Mutualistic interactions can strongly influence species invasions, as the inability to form successful mutualisms in an exotic range could hamper a host's invasion success. This barrier to invasion may be overcome if an invader either forms novel mutualistic associations or finds and associates with familiar mutualists in the exotic range. Here, we ask (1) does the community of rhizobial mutualists associated with invasive legumes in their exotic range overlap with that of local native legumes and (2) can any differences be explained by fundamental incompatibilities with particular rhizobial genotypes? To address these questions, we first characterized the rhizobial communities naturally associating with three invasive and six native legumes growing in the San Francisco Bay Area. We then conducted a greenhouse experiment to test whether the invasive legume could nodulate with any of a broad array of rhizobia found in their exotic range. There was little overlap between the Bradyrhizobium communities associated with wild‐grown invasive and native legumes, yet the invasive legumes could nodulate with a broad range of rhizobial strains under greenhouse conditions. These observations suggest that under field conditions in their exotic range, these invasive legumes are not currently associating with the mutualists of local native legumes, despite their potential to form such associations. However, the promiscuity with which these invading legumes can form mutualistic associations could be an important factor early in the invasion process if mutualist scarcity limits range expansion. Overall, the observation that invasive legumes have a community of rhizobia distinct from that of native legumes, despite their ability to associate with many rhizobial strains, challenges existing assumptions about how invading species obtain their mutualists. These results can therefore inform current and future efforts to prevent and remove invasive species.  相似文献   

14.

Aim

Shifts in diet composition, abundance or distribution of native predators can occur as a result of exotic prey introductions. We examined effects of non‐native earthworms and anthropogenic landscape disturbance on habitat selection by the American robin (Turdus migratorius), a generalist predator, at landscape and local levels. We also investigated whether robins could act as vectors of spread for earthworm cocoons (egg cases).

Location

Boreal forest of Alberta, Canada.

Methods

We conducted robin and earthworm surveys at campgrounds, well pads, roads, pipelines, seismic lines and forest interiors across northern Alberta. At a subset of paired locations that had similar habitats and anthropogenic disturbance levels, we sampled both robins and earthworms.

Results

Both groups were most likely to occur at campgrounds, well pads and roads. Furthermore, robins were more likely to occur at locations where earthworms were present in our paired local‐level surveys. This correlation between robin and earthworm distributions could be due to robins acting as a vector for earthworm spread, rather than robins’ use of earthworms as prey. However, in tests using captive robins, earthworm cocoons did not survive digestion.

Main conclusions

Robin and earthworm distributions were correlated, likely due to robins’ use of earthworms as prey. These results suggest exotic prey can strongly influence native predators at both landscape and local levels, with shifts in native predator distributions occurring as a result of spatial variability in exotic prey distributions. Although the impacts of ecosystem engineering by earthworms have been previously demonstrated, our study provides evidence that effects of earthworms can also cascade upwards via trophic interactions.  相似文献   

15.
Global climatic changes may lead to the arrival of multiple range‐expanding species from different trophic levels into new habitats, either simultaneously or in quick succession, potentially causing the introduction of manifold novel interactions into native food webs. Unraveling the complex biotic interactions between native and range‐expanding species is critical to understand the impact of climate change on community ecology, but experimental evidence is lacking. In a series of laboratory experiments that simulated direct and indirect species interactions, we investigated the effects of the concurrent arrival of a range‐expanding insect herbivore in Europe, Spodoptera littoralis, and its associated parasitoid Microplitis rufiventris, on the native herbivore Mamestra brassicae, and its associated parasitoid Microplitis mediator, when co‐occurring on a native plant, Brassica rapa. Overall, direct interactions between the herbivores were beneficial for the exotic herbivore (higher pupal weight than the native herbivore), and negative for the native herbivore (higher mortality than the exotic herbivore). At the third trophic level, both parasitoids were unable to parasitize the herbivore they did not coexist with, but the presence of the exotic parasitoid still negatively affected the native herbivore (increased mortality) and the native parasitoid (decreased parasitism rate), through failed parasitism attempts and interference effects. Our results suggest different interaction scenarios depending on whether S. littoralis and its parasitoid arrive to the native tritrophic system separately or concurrently, as the negative effects associated with the presence of the parasitoid were dependent on the presence of the exotic herbivore. These findings illustrate the complexity and interconnectedness of multitrophic changes resulting from concurrent species arrival to new environments, and the need for integrating the ecological effects of such arrivals into the general theoretical framework of global invasion patterns driven by climatic change.  相似文献   

16.
17.
The outcomes of invasive plant removal efforts are influenced by management decisions, but are also contingent on the uncontrolled spatial and temporal context of management areas. Phragmites australis is an aggressive invader that is intensively managed in wetlands across North America. Treatment options have been understudied, and the ecological contingencies of management outcomes are poorly understood. We implemented a 5‐year, multi‐site experiment to evaluate six Phragmites management treatments that varied timing (summer or fall) and types of herbicide (glyphosate or imazapyr) along with mowing, plus a nonherbicide solarization treatment. We evaluated treatments for their influence on Phragmites and native plant cover and Phragmites inflorescence production. We assessed plant community trajectories and outcomes in the context of environmental factors. The summer mow, fall glyphosate spray treatment resulted in low Phragmites cover, high inflorescence reduction, and provided the best conditions for native plant recruitment. However, returning plant communities did not resemble reference sites, which were dominated by ecologically important perennial graminoids. Native plant recovery following initial Phragmites treatments was likely limited by the dense litter that resulted from mowing. After 5 years, Phragmites mortality and native plant recovery were highly variable across sites as driven by hydrology. Plots with higher soil moisture had greater reduction in Phragmites cover and more robust recruitment of natives compared with low moisture plots. This moisture effect may limit management options in semiarid regions vulnerable to water scarcity. We demonstrate the importance of replicating invasive species management experiments across sites so the contingencies of successes and failures can be better understood.  相似文献   

18.
Population densities of invasive species fluctuate spatially and temporally, suggesting that the intensity of their aggressive interactions with native species is similarly variable. Although inter‐specific aggression is often thought to increase with population density, it is often theorized that it should be exceeded by intra‐specific aggression since conspecifics share a greater degree of resource overlap. Yet, the magnitude of intra‐specific aggression is seldom considered when examining aggressive interactions, particularly those between invasive and native species. Here, we manipulated the density of the invasive eastern mosquitofish, Gambusia holbrooki, and observed its aggressive interactions with juveniles of the native Australian bass, Macquaria novemaculeata in a laboratory setting. For both species, the magnitudes of intra‐ and inter‐specific aggression were recorded. Regardless of density, the native M. novemaculeata was more aggressive towards heterospecifics than G. holbrooki was. In addition to this, M. novemaculeata was more aggressive to G. holbrooki than towards conspecifics, at both low‐ and high‐density conditions. In contrast, G. holbrooki was similarly aggressive towards M. novemaculeata and G. holbrooki at a high density, yet at low density, displayed significantly more aggression towards conspecifics than M. novemaculeata. These findings demonstrate the importance of considering intra‐specific aggression when exploring behavioural interactions between native and invasive species.  相似文献   

19.
Floral resources from native plants that are adapted to the local environment could be more advantageous than the use of nonnative plants. In Australia, there is a dearth of information on the benefits of native plants to natural enemies and their selectivity against pests. Accordingly, we examined the longevity of the parasitoids Diaeretiella rapae (McIntosh) and Cotesia glomerata (L.) (both Hymenoptera: Braconidae), and Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) exposed to flowering shoots from Australian native plants which was compared with the nonnative buckwheat (Fagopyrum esculentum), often used in conservation biological control. Longevity of parasitoids was significantly enhanced by the Australian natives Westringia fruticosa, Mentha satureioides, Callistemon citrinus, Leptospermum cv. ‘Rudolph’, Grevillea cv. ‘Bronze Rambler’, Myoporum parvifolium, Lotus australis, and nonnative F. esculentum. The highest mean survival by native plant species was 3.4× higher for D. rapae with Leptospermum sp. and 4.3× higher for D. semiclausum with M. parvifolium. For C. glomerata, Grevillea sp. increased longevity by 6.9× compared with water only. Longevity of Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major crop pest, was enhanced by all plants against which it was screened except Acacia baileyana, a species that had no effect on parasitoid longevity. Several Australian native plant species that benefit parasitoids were identified. None of the plant species provided a selective benefit to the parasitoid D. semiclausum compared with its host P. xylostella; however, the benefit of M. parvifolium and Grevillea sp. on the longevity of D. semiclausum was relatively higher compared with the pest. These results suggest the need for field studies to determine whether native Australian plants increase P. xylostella impact in nearby brassica crops.  相似文献   

20.
The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at qualitative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions. Learning can be crucial for survival and reproduction of introduced organisms in novel areas, for example, for detecting new predators, or finding mates or oviposition sites. Here we explored how oviposition performance evolved in relation to both fecundity and learning during an invasion, using native and introduced Drosophila subobscura populations performing an ecologically relevant task. Our results indicated that, under comparable conditions, invasive populations performed better during our oviposition task than did native populations. This was because invasive populations had higher fecundity, together with similar cognitive performance when compared to native populations, and that there was no interaction between learning and fecundity. Unexpectedly, our study did not reveal an allocation trade‐off (i.e., a negative relationship) between learning and fecundity. On the contrary, the pattern we observed was more consistent with an acquisition trade‐off, meaning that fecundity could be limited by availability of resources, unlike cognitive ability. This pattern might be the consequence of escaping natural enemies and/or competitors during the introduction. The apparent lack of evolution of learning may indicate that the introduced population did not face novel cognitive challenges in the new environment (i.e., cognitive “pre‐adaptation”). Alternatively, the evolution of learning may have been transient and therefore not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号