首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyphae of ectomycorrhizal and ericoid mycorrhizal fungi proliferate in nitrogen (N)-limited forests and tundra where the availability of inorganic N is low; under these conditions the most common fungal species are those capable of protein degradation that can supply their host plants with organic N. Although it is widely understood that these symbiotic fungi supply N to their host plants, the transfer is difficult to quantify in the field. A novel approach uses the natural 15N:14N ratios (expressed as δ15N values) in plants, soils, and mycorrhizal fungi to estimate the fraction of N in symbiotic trees and shrubs that enters through mycorrhizal fungi. This calculation is possible because mycorrhizal fungi discriminate against 15N when they create compounds for transfer to plants; host plants are depleted in 15N, whereas mycorrhizal fungi are enriched in 15N. The amount of carbon (C) supplied to these fungi can be stoichiometrically calculated from the fraction of plant N derived from the symbiosis, the N demand of the plants, the fungal C:N ratio, and the fraction of N retained in the fungi. Up to a third of C allocated belowground, or 20% of net primary production, is used to support ectomycorrhizal fungi. As anthropogenic N inputs increase, the C allocation to fungi decreases and plant δ15N increases. Careful analyses of δ15N patterns in systems dominated by ectomycorrhizal and ericoid mycorrhizal symbioses may reveal the ecosystem-scale effects of alterations in the plant–mycorrhizal symbioses caused by shifts in climate and N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) form symbioses with most crops, potentially improving their nutrient assimilation and growth. The effects of cultivar and atmospheric CO2 concentration ([CO2]) on wheat–AMF carbon‐for‐nutrient exchange remain critical knowledge gaps in the exploitation of AMF for future sustainable agricultural practices within the context of global climate change. We used stable and radioisotope tracers (15N, 33P, 14C) to quantify AMF‐mediated nutrient uptake and fungal acquisition of plant carbon in three wheat (Triticum aestivum L.) cultivars. We grew plants under current ambient (440 ppm) and projected future atmospheric CO2 concentrations (800 ppm). We found significant 15N transfer from fungus to plant in all cultivars, and cultivar‐specific differences in total N content. There was a trend for reduced N uptake under elevated atmospheric [CO2]. Similarly, 33P uptake via AMF was affected by cultivar and atmospheric [CO2]. Total P uptake varied significantly among wheat cultivars and was greater at the future than current atmospheric [CO2]. We found limited evidence of cultivar or atmospheric [CO2] effects on plant‐fixed carbon transfer to the mycorrhizal fungi. Our results suggest that AMF will continue to provide a route for nutrient uptake by wheat in the future, despite predicted rises in atmospheric [CO2]. Consideration should therefore be paid to cultivar‐specific AMF receptivity and function in the development of climate smart germplasm for the future.  相似文献   

3.
We present the rationale for a cross‐disciplinary investigation addressing the ‘Devonian plant hypothesis’ which proposes that the evolutionary appearance of trees with deep, complex rooting systems represents one of the major biotic feedbacks on geochemical carbon cycling during the Phanerozoic. According to this hypothesis, trees have dramatically enhanced mineral weathering driving an increased flux of Ca2+ to the oceans and, ultimately, a 90% decline in atmospheric CO2 levels through the Palaeozoic. Furthermore, experimental studies indicate a key role for arbuscular mycorrhizal fungi in soil–plant processes and especially in unlocking the limiting nutrient phosphorus in soil via Ca‐phosphate dissolution mineral weathering. This suggests co‐evolution of roots and symbiotic fungi since the Early Devonian could well have triggered positive feedbacks on weathering rates whereby root–fungal P release supports higher biomass forested ecosystems. Long‐standing areas of uncertainty in this paradigm include the following: (1) limited fossil record documenting the origin and timeline of the evolution of tree‐sized plants through the Devonian; and (2) the effects of the evolutionary advance of trees and their in situ rooting structures on palaeosol geochemistry. We are addressing these issues by integrating palaeobotanical studies with geochemical and mineralogical analyses of palaeosol sequences at selected sites across eastern North America with a particular focus on drill cores from Middle Devonian forests in Greene County, New York State.  相似文献   

4.
Field studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative tree–fungus mycorrhizal partnerships. Trees were grown in either a simulated past CO2 atmosphere (1500 ppm)—under which EM fungi evolved—or near-current CO2 (450 ppm). We report a direct linkage between photosynthate-energy fluxes from trees to EM and AM mycorrhizal mycelium and rates of calcium silicate weathering. Calcium dissolution rates halved for both AM and EM trees as CO2 fell from 1500 to 450 ppm, but silicate weathering by AM trees at high CO2 approached rates for EM trees at near-current CO2. Our findings provide mechanistic insights into the involvement of EM-associating forest trees in strengthening biological feedbacks on the geochemical carbon cycle that regulate atmospheric CO2 over millions of years.  相似文献   

5.
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root‐tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root‐tips examined, 50%–70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.  相似文献   

6.
Forest succession may cause changes in nitrogen (N) availability, vegetation and fungal community composition that affect N uptake by trees and their mycorrhizal symbionts. Understanding how these changes affect the functioning of the mycorrhizal symbiosis is of interest to ecosystem ecology because of the fundamental roles mycorrhizae play in providing nutrition to trees and structuring forest ecosystems. We investigated changes in tree and mycorrhizal fungal community composition, the availability and uptake of N by trees and mycorrhizal fungi in a forest undergoing a successional transition (age-related loss of early successional tree taxa). In this system, 82–96% of mycorrhizal hyphae were ectomycorrhizal (EM). As biomass production of arbuscular mycorrhizal (AM) trees increased, AM hyphae comprised a significantly greater proportion of total fungal hyphae, and the EM contribution to the N requirement of EM-associated tree taxa declined from greater than 75% to less than 60%. Increasing N availability was associated with lower EM hyphal foraging and 15N tracer uptake, yet the EM-associated later-successional species Quercus rubra was nonetheless a stronger competitor for 15N than AM-associated Acer rubrum, likely due to the more extensive nature of the persistent EM hyphal network. These results indicate that successional increases in N availability and co-dominance by AM-associated trees have increased the importance of AM fungi in the mycorrhizal community, while down-regulating EM N acquisition and transfer processes. This work advances understanding of linkages between tree and fungal community composition, and indicates that successional changes in N availability may affect competition between tree taxa with divergent resource acquisition strategies.  相似文献   

7.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

8.
Some green orchids obtain carbon from their mycorrhizal fungi, as well as from photosynthesis. These partially mycoheterotrophic orchids sometimes produce fully achlorophyllous, leaf‐bearing (albino) variants. Comparing green and albino individuals of these orchids will help to uncover the molecular mechanisms associated with mycoheterotrophy. We compared green and albino Epipactis helleborine by molecular barcoding of mycorrhizal fungi, nutrient sources based on 15N and 13C abundances and gene expression in their mycorrhizae by RNA‐seq and cDNA de novo assembly. Molecular identification of mycorrhizal fungi showed that green and albino E. helleborine harboured similar mycobionts, mainly Wilcoxina. Stable isotope analyses indicated that albino E. helleborine plants were fully mycoheterotrophic, whereas green individuals were partially mycoheterotrophic. Gene expression analyses showed that genes involved in antioxidant metabolism were upregulated in the albino variants, which indicates that these plants experience greater oxidative stress than the green variants, possibly due to a more frequent lysis of intracellular pelotons. It was also found that some genes involved in the transport of some metabolites, including carbon sources from plant to fungus, are higher in albino than in green variants. This result may indicate a bidirectional carbon flow even in the mycoheterotrophic symbiosis. The genes related to mycorrhizal symbiosis in autotrophic orchids and arbuscular mycorrhizal plants were also upregulated in the albino variants, indicating the existence of common molecular mechanisms among the different mycorrhizal types.  相似文献   

9.
Arbuscular mycorrhizal (AM) fungi have beneficial effects on host plants, but their growth is influenced by various factors. This study was carried out to analyze the variation of AM fungi in soils and roots of peach (Prunus persica L. var. Golden Honey 3, a yellow-flesh variety) trees in different soil layers (0–40 cm) and their correlation with soil properties. The peach tree could be colonized by indigenous AM fungi (2.2–8.7 spores/g soil and 1.63–3.57 cm hyphal length/g soil), achieving 79.50–93.55% of root AM fungal colonization degree. The mycorrhizal growth, root sugars, soil three glomalins, NH4+-N, NO3-N, available P and K, and soil organic matter (SOM) had spatial heterogeneity. Soil spores, but not soil hyphae contributed to soil glomalin, and soil glomalin also contributed to SOM. There was a significant correlation of soil hyphae with spore density, soil NO3-N, and SOM. Root mycorrhiza was positively correlated with spore density, NH4+-N, NO3-N, and easily extractable glomalin-related soil protein. Notably, spore density positively correlated with NO3-N, available K, SOM, and root fructose and glucose, while negatively correlated with available P and root sucrose. These findings concluded that mycorrhiza of peach showed spatial distribution, and soil properties mainly affected/altered based on the soil spore density.  相似文献   

10.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

11.
Mycorrhiza formation represents a significant carbon (C) acquisition alternative for orchid species, particularly those that remain achlorophyllous through all life stages. As it is known that orchid mycorrhizas facilitate nutrient transfer (most notably of C), it has not been resolved if C transfer occurs only after lysis of mycorrhizal structures (fungal pelotons) or also across the mycorrhizal interface of pre‐lysed pelotons. We used high‐resolution secondary ion mass spectrometry (nanoSIMS) and labelling with enriched 13CO2 to trace C transfers, at subcellular scale, across mycorrhizal interfaces formed by Rhizanthella gardneri, an achlorphyllous orchid. Carbon was successfully traced in to the fungal portion of orchid mycorrhizas. However, we did not detect C movement across intact mycorrhizal interfaces up to 216 h post 13CO2 labelling. Our findings provide support for the hypothesis that C transfer from the mycorrhizal fungus to orchid, at least for R. gardneri, likely occurs after lysis of the fungal peloton.  相似文献   

12.
The climbing orchid Erythrorchis altissima is the largest mycoheterotroph in the world. Although previous in vitro work suggests that E. altissima has a unique symbiosis with wood‐decaying fungi, little is known about how this giant orchid meets its carbon and nutrient demands exclusively via mycorrhizal fungi. In this study, the mycorrhizal fungi of E. altissima were molecularly identified using root samples from 26 individuals. Furthermore, in vitro symbiotic germination with five fungi and stable isotope compositions in five E. altissima at one site were examined. In total, 37 fungal operational taxonomic units (OTUs) belonging to nine orders in Basidiomycota were identified from the orchid roots. Most of the fungal OTUs were wood‐decaying fungi, but underground roots had ectomycorrhizal Russula. Two fungal isolates from mycorrhizal roots induced seed germination and subsequent seedling development in vitro. Measurement of carbon and nitrogen stable isotope abundances revealed that E. altissima is a full mycoheterotroph whose carbon originates mainly from wood‐decaying fungi. All of the results show that E. altissima is associated with a wide range of wood‐ and soil‐inhabiting fungi, the majority of which are wood‐decaying taxa. This generalist association enables E. altissima to access a large carbon pool in woody debris and has been key to the evolution of such a large mycoheterotroph.  相似文献   

13.
Switchgrass (Panicum virgatum L.) is usually grown on marginal land for biofuel system, in which nitrogen (N) is an essential management practice, and landscape position is a key topographical factor in impacting the production. However, limited information is available regarding how the N application and landscape positions affect soil microbial communities and enzyme activities under switchgrass. Thus, the specific objective of this study was to evaluate the responses of N rate (high, 112 kg N/ha; medium, 56 kg N/ha; and low, 0 kg N/ha) and landscape positions (shoulder and footslope) on soil biological health under switchgrass field. Data showed that N addition significantly influenced carbon and N fractions. The hot water‐soluble organic carbon (HWC) and nitrogen (HWN) fractions were significantly higher at footslope position than the shoulder position. The amount of total phospholipid fatty acid (PLFA), total bacterial, actinomycetes, gram‐negative and gram‐positive bacteria, total fungi, arbuscular mycorrhizal (AM) fungi, and saprophytes PLFAs were highest with medium and high N rates and footslope position. The N addition increased total PLFAs in N fertilizer treatments, viz. medium (5,946 ng PLFA‐C/g soil) and high N rates (5,871 ng PLFA‐C/g soil). Microbial biomass carbon and nitrogen and enzyme activities (urease, β‐glucosidase, acid phosphatase and arylsulfatase) were significantly enhanced by N fertilization (medium and high N rates) compared to control (low N rates) under footslope position. The urease activity under medium (36.3 µmol N‐NH4+ g?1 soil hr?1) and high N rates (31.4 µmol N‐NH4+ g?1 soil hr?1) was 42.9% and 23.6% higher than low N rates, respectively. This study suggests that the application of medium N rate in footslope position to switchgrass can enhance the soil biological properties and hence can protect the environment from the excessive use of N fertilizer.  相似文献   

14.
The goal of this study was to evaluate the contribution of oak trees (Quercus spp.) and their associated mycorrhizal fungi to total community soil respiration in a deciduous forest (Black Rock Forest) and to explore the partitioning of autotrophic and heterotrophic respiration. Trees on twelve 75 × 75-m plots were girdled according to four treatments: girdling all the oaks on the plot (OG), girdling half of the oak trees on a plot (O50), girdling all non-oaks on a plot (NO), and a control (C). In addition, one circular plot (diameter 50 m) was created where all trees were girdled (ALL). Soil respiration was measured before and after tree girdling. A conservative estimate of the total autotrophic contribution is approximately 50%, as indicated by results on the ALL and OG plots. Rapid declines in carbon dioxide (CO2) flux from both the ALL and OG plots, 37 and 33%, respectively, were observed within 2 weeks following the treatment, demonstrating a fast turnover of recently fixed carbon. Responses from the NO and O50 treatments were statistically similar to the control. A non-proportional decline in respiration rates along the gradient of change in live aboveground biomass complicated partitioning of the overall rate of soil respiration and indicates that belowground carbon flux is not linearly related to aboveground disturbance. Our findings suggest that in this system there is a threshold disturbance level between 35 and 74% of live aboveground biomass loss, beyond which belowground dynamics change dramatically.  相似文献   

15.
Mycorrhizas are ubiquitous plant–fungus mutualists in terrestrial ecosystems and play important roles in plant resource capture and nutrient cycling. Sporadic evidence suggests that anthropogenic nitrogen (N) input may impact the development and the functioning of arbuscular mycorrhizal (AM) fungi, potentially altering host plant growth and soil carbon (C) dynamics. In this study, we examined how mineral N inputs affected mycorrhizal mediation of plant N acquisition and residue decomposition in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that either prevented or allowed AM fungal hyphae but not plant roots to grow into the TEST compartments. Wild oat (Avena fatua L.) was planted in the HOST compartments that had been inoculated with either a single species of AM fungus, Glomus etunicatum, or a mixture of AM fungi including G. etunicatum. Mycorrhizal contributions to plant N acquisition and residue decomposition were directly assessed by introducing a mineral 15N tracer and 13C‐rich residues of a C4 plant to the TEST compartments. Results from 15N tracer measurements showed that AM fungal hyphae directly transported N from the TEST soil to the host plant. Compared with the control with no penetration of AM fungal hyphae, AM hyphal penetration led to a 125% increase in biomass 15N of host plants and a 20% reduction in extractable inorganic N in the TEST soil. Mineral N inputs to the HOST compartments (equivalent to 5.0 g N m?2 yr?1) increased oat biomass and total root length colonized by mycorrhizal fungi by 189% and 285%, respectively, as compared with the no‐N control. Mineral N inputs to the HOST plants also reduced extractable inorganic N and particulate residue C proportion by 58% and 12%, respectively, in the corresponding TEST soils as compared to the no‐N control, by stimulating AM fungal growth and activities. The species mixture of mycorrhizal fungi was more effective in facilitating N transport and residue decomposition than the single AM species. These findings indicate that low‐level mineral N inputs may significantly enhance nutrient cycling and plant resource capture in terrestrial ecosystems via stimulation of root growth, mycorrhizal functioning, and residue decomposition. The long‐term effects of these observed alterations on soil C dynamics remain to be investigated.  相似文献   

16.
The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0–359.2 Ma) and the gradual decline from the Cretaceous (145.5–65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF), while the Cenozoic (c. 65.5–0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon‐energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.  相似文献   

17.
Plantago lanceolata plants were grown under various environmental conditions in association with the mycorrhizal fungi Glomus mosseae, G. caledonium and a fine endophyte either individually or all together. Using a time‐course approach, we investigated the effects of elevated atmospheric CO2 (eCO2), soil warming and drought and their interactions on root length colonized (RLC) by mycorrhizal fungi and extraradical mycorrhizal hyphal (EMH) production. Plant growth responded as would be expected to the environmental manipulations. There was no plant growth‐independent effect of eCO2 on mycorrhizal colonization; however, EMH production was stimulated by eCO2, i.e. there was increased partitioning of below‐ground carbon to the EMH. Soil warming directly stimulated both percent RLC by the Glomus species and EMH density; soil warming did not affect RLC by the fine endophyte. Drought decreased percent RLC for the fine endophyte, but not for the Glomus species. The presence of one mycorrhizal fungus did not affect the response of another to the environmental variables. There was no evidence of any interactive effects of the environmental variables on RLC, but there were significant environmental interactions on EMH production. In particular, the stimulatory effects of eCO2 and soil warming on EMH density were not additive. The results are discussed in terms of the soil carbon cycle, highlighting some crucial gaps in our knowledge. If future environmental changes affect mycorrhizal fungal turnover and respiration, then this could have important implications for the terrestrial carbon cycle.  相似文献   

18.
The ecological impacts of long‐term elevated atmospheric CO2 (eCO2) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO2. eCO2 significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2. Most population‐level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions.  相似文献   

19.
Field‐growing silver birch (Betula pendula Roth) clones (clone 4 and 80) were exposed to elevated CO2 and O3 in open‐top chambers for three consecutive growing seasons (1999–2001). At the beginning of the OTC experiment, all trees were 7 years old. We studied the single and interaction effects of CO2 and O3 on silver birch below‐ground carbon pools (i.e. effects on fine roots and mycorrhizas, soil microbial communities and sporocarp production) and also assessed whether there are any clonal differences in these below‐ground CO2 and O3 responses. The total mycorrhizal infection level of both clones was stimulated by elevated CO2 alone and elevated O3 alone, but not when elevated CO2 was used in fumigation in combination with elevated O3. In both clones, elevated CO2 affected negatively light brown/orange mycorrhizas, while its effect on other mycorrhizal morphotypes was negligible. Elevated O3, instead, clearly decreased the proportions of black and liver‐brown mycorrhizas and increased that of light brown/orange mycorrhizas. Elevated O3 had a tendency to decrease standing fine root mass and sporocarp production as well, both of these O3 effects mainly manifesting in clone 4 trees. CO2 and O3 treatment effects on soil microbial community composition (PLFA, 2‐ and 3‐OH‐FA profiles) were negligible, but quantitative PLFA data showed that in 2001 the PLFA fungi : bacteria‐ratio of clone 80 trees was marginally increased because of elevated CO2 treatments. This study shows that O3 effects were most clearly visible at the mycorrhizal root level and that some clonal differences in CO2 and O3 responses were observable in the below‐ground carbon pools. In conclusion, the present data suggests that CO2 effects were minor, whereas increasing tropospheric O3 levels can be an important stress factor in northern birch forests, as they might alter mycorrhizal morphotype assemblages, mycorrhizal infection rates and sporocarp production.  相似文献   

20.
We studied the role of different arbuscular‐mycorrhizal (AM) fungi on lettuce (Lactuca sativa L.) plant carbon metabolism under drought stress. Plants were grown in pots maintained at two levels of soil moisture and labeled during photosynthesis with CO2. P‐fertilized plants were used as a non‐mycorrhizal control. Well‐watered mycorrhizal plants showed similar growth to that of P‐fertilized plants. The level of mycorrhizal root infection was not significantly affected by fungal species or by water treatment. In contrast, important differences in Δ13C between P‐fertilized and AM plants were found in shoot and root tissues as a consequence of both water limitation and fungal presence. Δ13C in shoots and roots increased in non‐mycorrhizal treatment as compared with the well‐watered plants, whereas this parameter decreased significantly in mycorrhizal plants. Photosynthetic activity was increased in AM plants in well‐watered and droughted plants. G. deserticola was the most beneficial endophyte for water use efficiency in both water treatments. Transpiration rate was not affected by any of the treatments. On the basis of total C in plant tissues, in AM plants the newly fixed C seemed to be preferentially utilized for fungal activity rather than being stored in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号