首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【背景】作为临床最常见的非结核条件致病分枝杆菌,脓肿分枝杆菌(Mycobacteroides abscessus)因其天然、多耐药等特性成为目前临床治疗的一大挑战。作为分枝杆菌限制性营养元素——铁摄取的关键系统,分枝杆菌素(mycobactin,MBT)、羧基分枝杆菌素(carboxymycobactin,cMBT)与病原分枝杆菌的毒力、耐药等密切相关。【目的】丰富分枝杆菌MBT、cMBT结构数据,探究MBT在致病分枝杆菌起源过程中的演化规律。【方法】在MALDI-TOF-MS与FT-MS/MS解析脓肿MBT、cMBT结构的基础上,进一步开展其活性分析与生物合成基因簇比较基因组分析。【结果】虽然脓肿分枝杆菌MBT、cMBT母核修饰模式与海洋分枝杆菌最相似,R1、R2、R3、R5等位置的修饰完全相同,而且脂肪酸链均位于R4位置;但脂肪酸链长度不同[C10-17 (MBT)、C4-8 (cMBT)],为新结构。Fe-cMBT不仅以浓度依赖方式促进脓肿分枝杆菌生长,而且利用效率显著高于FeCl3,相关结果表明MBT-cMBT是脓肿分枝杆菌高效获取铁元素的关键系统。与MBT结构结果一致,mbt-1基因簇共线性分析及mbt-1mbt-2系统发育分析结果均表明脓肿分枝杆菌与海洋分枝杆菌(M.marinum)亲缘关系最近,而非结核分枝杆菌(M.tuberculosis)或耻垢分枝杆菌(M.smegmatis) (基于16S rRNA基因序列分析)。进一步分析发现,M.marinumM.tuberculosisM.bovis等病原分枝杆菌脂肪酸链长度变化范围仅4 C,而M.abscessusM.fortuitumM.aviumM.smegmatis等条件致病与非致病菌的脂肪酸链长度变化范围为7-11 C,暗示MBT同系物脂肪酸链长度变化范围与分枝杆菌不同生活方式、环境之间可能存在关联。【结论】作为获取铁元素的关键系统,具有独特结构的脓肿分枝杆菌MBT-cMBT在致病、耐药等方面的作用及起源、演化规律值得深入研究。  相似文献   

2.
The causative agent of tuberculosis, Mycobacterium tuberculosis, and its close relative Mycobacterium marinum manipulate phagocytic host cells, thereby creating a replication‐permissive compartment termed the Mycobacterium‐containing vacuole (MCV). The phosphoinositide (PI) lipid pattern is a crucial determinant of MCV formation and is targeted by mycobacterial PI phosphatases. In this study, we establish an efficient phage transduction protocol to construct defined Mmarinum deletion mutants lacking one or three phosphatases, PtpA, PtpB, and/or SapM. These strains were defective for intracellular replication in macrophages and amoebae, and the growth defect was complemented by the corresponding plasmid‐borne genes. Fluorescence microscopy of Mmarinum‐infected Dictyostelium discoideum revealed that MCVs harbouring mycobacteria lacking PtpA, SapM, or all three phosphatases accumulate significantly more phosphatidylinositol‐3‐phosphate (PtdIns3P) compared with MCVs containing the parental strain. Moreover, PtpA reduced MCV acidification by blocking the recruitment of the V‐ATPase, and all three phosphatases promoted bacterial escape from the pathogen vacuole to the cytoplasm. In summary, the secreted Mmarinum phosphatases PtpA, PtpB, and SapM determine the MCV PI pattern, compartment acidification, and phagosomal escape.  相似文献   

3.
4.
Methods were devised to purify the cell-associated, iron-binding compounds known as mycobactins from the closely related species Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum (i.e., the MAIS complex of organisms). The mycobactins from these three species showed a structure that is common to the mycobactins from all the mycobacteria examined to date. However, these mycobactins were unique in that they had more than one alkyl chain. The M. scrofulaceum mycobactins differed from other MAIS mycobactins by a shift in the position of the double bond in the R1 alkyl chain. Traces of other mycobactin types were observed in ethanol extracts of the three species, and examination of the chromatographic properties of these mycobactins showed that each species produced five mycobactin types. Each mycobactin could be subdivided further by the length of its R1 alkyl chain. No differences in the production of these novel mycobactin were observed among species. Mycobactins from three strains of Mycobacterium paratuberculosis and two wood pigeon strains of Mycobacterium avium which had lost their original growth requirements for mycobactin after repeated subculturing in laboratory growth media were examined by thin-layer chromatography and high-pressure liquid chromatography. Each organism produced a mycobactin with similar chromatographic properties to those synthesized by MAIS organisms. M. paratuberculosis NADC 18 produced at least two components in our laboratory, and nuclear magnetic resonance analysis of the major component showed this mycobactin to be identical to that produced by M. intracellulare M12. However, a sample of mycobactin J isolated by Merkal and McCullough (Curr. Microbiol. 7:333-335, 1982) from M. paratuberculosis NADC 18 was different from our isolates and appeared to correspond to a minor mycobactin component we had seen by thin-layer chromatography. No reason for this difference could be evinced. Our findings indicate that there is a close taxonomic relationship between M. paratuberculosis and the MAIS complex.  相似文献   

5.
Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high‐throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.  相似文献   

6.
The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth in vitro and in vivo. The deletion mutant, ΔmbtN, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of mbtK ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The mbtK mutant showed markedly reduced iron scavenging and growth in vitro. Further, ΔmbtK was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.  相似文献   

7.
In Japan, a Mycobacterium marinum‐like mycobacterium was isolated from the yellowtail, Seriola quinqueradiata. The species was identified as M. marinum by a commercial mycobacterial DNA‐DNA hybridization kit. Nevertheless, PCR restriction analysis of the DNA of its RNA polymerase β‐subunit gene definitively showed that this Mycobacterium sp. was M. ulcerans. PCR analysis revealed the genotypic characteristics of M. ulcerans in the Mycobacterium sp., only the mup053 gene sequence being absent, as has been found previously in other piscine mycobacteria such as M. marinum strains DL240490 and DL045 and M. pseudoshottsii. With one exception, this Mycobacterium sp. and M. pseudoshottsii had identical 16S rRNA gene sequences, which is also probably true of M. marinum strains DL240490 and DL045. Similarly, according to comparisons of the 16S rRNA gene, ITS region, and hsp65 gene sequences, this Mycobacterium sp. is more closely related to M. pseudoshottsii than to M. ulcerans or M. marinum. A PCR product of approximately 2000 bp was amplified from region of difference 9 in the Mycobacterium sp. The nucleotide sequence revealed insertion of IS2404, the sequence of which is 1366 bp long. The novel single nucleotide polymorphisms identified in this region distinguished this Mycobacterium sp. from M. marinum strain DL240490 and M. pseudoshottsii. The present findings raise the possibility that these species have a common ancestor. Further studies are required to improve our understanding of the relationship between their geographical origin and genetic diversity.  相似文献   

8.
A single pure component was isolated from mycobactin P by countercurrent distribution; its side chain is n-cis-octadec-2-enoyl; its purity and molecular structure were confirmed by mass spectrometry of its aluminium complex. The separation of ferric and of aluminium complexes of mycobactins by thin-layer chromatography is described. Mycobacterium terrae, M. marinum and M. smegmatis produce mycobactins that differ among themselves and from mycobactins P and T. A nomenclature for the mycobactins and their derivatives is suggested.  相似文献   

9.
Nine different strains of mycobacteria grown on media deficient in iron all produced mycobactins. Most strains produced one mycobactin in great preponderance. Mycobacteria from clearly distinct taxonomic groups gave mycobactins differing in the structure of their nuclei. One group of taxonomically related mycobacteria produced mycobactins having the same nucleus but with different distributions of side chains within the homologous mixtures. Simple methods are described for identifying mycobactins on a small scale; these may be of value in classifying mycobacteria. Structures are proposed for mycobactin A from Mycobacterium aurum, mycobactin R from M. terrae, mycobactin F, produced together with mycobactin H by M. fortuitum, and mycobactins M and N from M. marinum. The first three of these differ from known mycobactins in details of substitution and configuration of asymmetric centres in the nucleus. Mycobactins M and N are substantially different, having only small acyl groups (acetyl and propionyl respectively) at the hydroxamic acid centre of the mycobactic acid moiety. Both are homologous mixtures having long-chain saturated 3-hydroxy-2-methyl acid fragments in the cobactin moiety. All mycobactins so far isolated promote almost maximal growth of M. johnei at 30ng./ml. in liquid medium. The activity of some mycobactins extends to much lower concentrations, mycobactin S showing significant growth promotion at 0.3ng./ml. Mycobactin M or N in combination with mycobactins having a long side chain in the mycobactic acid moiety exerts a mutually antagonistic effect on the growth of M. johnei, the mixture giving less growth than either mycobactin separately. Mycobactin M also decreases the growth of M. kansasii and M. tuberculosis on liquid media. These antagonistic effects are probably caused by a lengthening of the lag phase.  相似文献   

10.
The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2‐dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2‐dependent substrates. Immunoblotting procedures confirmed SecA2‐dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG‐overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2‐dependent membrane localization of PknG is an important determinant for M. marinum virulence.  相似文献   

11.
Mycobacterium marinum is difficult to distinguish from other species of Mycobacterium isolated from fish using biochemical methods. Here, we used genetic and proteomic analyses to distinguish three Mycobacterium strains: M. marinum strains MB2 and Europe were isolated from tropical and marine fish in Thailand and Europe, and Mycobacterium sp. 012931 strain was isolated from yellowtail in Japan. In phylogenetic trees based on gyrB, rpoB, and Ag85B genes, Mycobacterium sp. 012931 clustered with M. marinum strains MB2 and Europe, but in trees based on 16S rRNA, hsp65, and Ag85A genes Mycobacterium sp. 012931 did not cluster with the other strains. In proteomic analyses using a Bruker matrix-assisted laser desorption ionization Biotyper, the mass profile of Mycobacterium sp. 012931 differed from the mass profiles of the other two fish M. marinum strains. Therefore, Mycobacterium sp. 012931 is similar to M. marinum but is not the same, suggesting that it could be a subspecies of M. marinum.  相似文献   

12.
Mycobactin S has been isolated from Mycobacterium smegmatis and from Mycobacterium sp. Olitzky & Gershon, strain 2, and mycobactin H from M. thermoresistible; all three organisms were grown on synthetic media of low iron content. These two mycobactins are mixtures of compounds having the same nucleus but differing in their fatty side chains. The nucleus of mycobactin S has a chemical structure identical with that of mycobactin T but differs in the optical configuration at the beta-carbon atom of the hydroxy acid fragment; the configuration in mycobactin S is S whereas that in mycobactin T is R (the previous assignment of this configuration was incorrect). The cobactin fragment of mycobactin H is identical with that of mycobactin S, but the mycobactic acid moiety differs in having methyl groups at position 6 in the benzene ring and at position 5 in the oxazoline ring. The configurations of all the asymmetric centres have been established for both mycobactins. Improved and simplified methods for the extraction and purification of mycobactins are described.  相似文献   

13.
The morphology and phylogeny of Pleuronema binucleatum n. sp., P. parawiackowskii n. sp., and P. marinum Dujardin 1841, collected from Hangzhou Bay estuary, China, were investigated using standard methods. Pleuronema binucleatum n. sp. can be identified by possessing about 90–120 × 35–50 μm cell size in vivo, reniform body outline, two macronuclei, six to eight preoral kineties, 32–41 somatic kineties, and posterior end of the anterior fragment of membranelle 2 (M2a) hook‐like. Pleuronema parawiackowskii n. sp. is characterized by the combination of the following characters: body size about 60–90 × 20–40 μm in vivo, elliptical in outline, four to eight preoral kineties, 20–29 somatic kineties, posterior portion of the M2a slightly curved but nonhooked, and single macronucleus sausage‐like. After comparison with other populations of P. marinum, it is suggested that many misidentifications exist in previous studies. And an improved diagnosis of P. marinum was supplied: cell about 95–180 μm long, elliptical in outline; 2–4 preoral kineties and 53–70 somatic kineties; both membranelle 1 and membranelle 3 three‐rowed; posterior end of the M2a straight; single contractile vacuole characteristically positioned near mid‐body. The small subunit rRNA genes of three forms were sequenced. Phylogenetic analyses indicate that the monophyly of the genus Pleuronema is still not supported.  相似文献   

14.
The MtrAB signal transduction system, which participates in multiple cellular processes related to growth and cell wall homeostasis, is the only two‐component system known to be essential in Mycobacterium. In a screen for antibiotic resistance determinants in Mycobacterium smegmatis, we identified a multidrug‐sensitive mutant with a transposon insertion in lpqB, the gene located immediately downstream of mtrA–mtrB. The lpqB mutant exhibited increased cell–cell aggregation and severe defects in surface motility and biofilm growth. lpqB cells displayed hyphal growth and polyploidism, reminiscent of the morphology of Streptomyces, a related group of filamentous Actinobacteria. Heterologous expression of M. tuberculosis LpqB restored wild‐type characteristics to the lpqB mutant. LpqB interacts with the extracellular domain of MtrB, and influences MtrA phosphorylation and promoter activity of dnaA, an MtrA‐regulated gene that affects cell division. Furthermore, in trans expression of the non‐phosphorylated, inactive form of MtrA in wild‐type M. smegmatis resulted in phenotypes similar to those of lpqB deletion, whereas expression of the constitutively active form of MtrA restored wild‐type characteristics to the lpqB mutant. These results support a model in which LpqB, MtrB and MtrA form a three‐component system that co‐ordinates cytokinetic and cell wall homeostatic processes.  相似文献   

15.
Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C‐terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail‐forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane‐defined vacuoles. Functional complementation studies indicated that the C‐terminus, but not the N‐terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non‐pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.  相似文献   

16.
Mycobacterium spp., rod‐shaped cells belonging to the phylum Actinomycetes, lack the Min‐ and Noc/Slm systems responsible for preventing the placement of division sites at the poles or over the nucleoids to ensure septal assembly at mid‐cell. We show that the position for establishment of the FtsZ‐ring in exponentially growing Mycobacterium marinum and Mycobacterium smegmatis cells is nearly random, and that the cells often divide non‐medially, producing two unequal but viable daughters. Septal sites and cellular growth disclosed by staining with the membrane‐specific dye FM4‐64 and fluorescent antibiotic vancomycin (FL‐Vanco), respectively, showed that many division sites were off‐centre, often over the nucleoids, and that apical cell growth was frequently unequal at the two poles. DNA transfer through the division septum was detected, and translocation activity was supported by the presence of a putative mycobacterial DNA translocase (MSMEG2690) at the majority of the division sites. Time‐lapse imaging of single live cells through several generations confirmed both acentric division site placement and unequal polar growth in mycobacteria. Our evidence suggests that post‐septal DNA transport and unequal polar growth may compensate for the non‐medial division site placement in Mycobacterium spp.  相似文献   

17.
Mycobacterium is a genus within the order Actinomycetales that comprises of a large number of well-characterized species, several of which includes pathogens known to cause serious disease in human and animal. Here, we report the whole genome sequence of Mycobacterium sp. strain 012931 isolated from the marine fish, yellowtail (Seriola quinqueradiata). Mycobacterium sp. 012931 is a fish pathogen causing serious damage to aquaculture farms in Japan. DNA dot plot analysis showed that Mycobacterium sp. 012931 was more closely related to Mycobacterium marinum when compared across several Mycobacterium species. However, little conservation of the gene order was observed between Mycobacterium sp. 012931 and M. marinum genome. The annotated 5,464 genes of Mycobacterium sp. 012931 was classified into 26 subsystems. The insertion/deletion gene analysis shows Mycobacterium sp. 012931 had 643 unique genes that were not found in the M. marinum strains. In the virulence, disease, and defense subsystem, both insertion and deletion genes of Mycobacterium sp. 012931 were associated with the PPE gene cluster of Mycobacteria. Of seven plcB genes in Mycobacterium sp. 012931, plcB_2 and plcB_3 showed low identities with those of M. marinum strains. Therefore, Mycobacterium sp. 012931 has differences on genetic and virulence from M. marinum and may induce different interaction mechanisms between host and pathogen.  相似文献   

18.
Mycobactin J-1, an iron chelate fromMycobacterium paratuberculosis, was characterized by mass spectrum and by1H nuclear magnetic resonance (NMR) and13C NMR spectra of the parent molecule and of cobactin J-1. The core structure of mycobactin J-1 contained the phenyloxazoline ring system common to the mycobactins. The benzene ring was disubstituted. The two hydroxamate functions were furnished by 1 linear 6-N-hydroxylysine residue and 1 cyclic 6-N-hydroxylysine residue as in other members of this class of compounds. The acyl function at the mycobactic acid hydroxamate center wasn-cis-hexadec-2-enoyl. The hydroxyacid of the cobactin portion of mycobactin J-1 was 2,4-dimethyl-3-hydroxypentanoic acid. This latter residue differs from those of other known mycobactins by the presence of the isopropyl group.  相似文献   

19.
In oxygenic phototrophic organisms, the phytyl ‘tail’ of chlorophyll a is formed from a geranylgeranyl residue by the enzyme geranylgeranyl reductase. Additionally, in oxygenic phototrophs, phytyl residues are the tail moieties of tocopherols and phylloquinone. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking geranylgeranyl reductase, ΔchlP, was compared to strains with specific deficiencies in either tocopherols or phylloquinone to assess the role of chlorophyll a phytylatation (versus geranylgeranylation). The tocopherol‐less Δhpt strain grows indistinguishably from the wild‐type under ‘standard’ light photoautotrophic conditions, and exhibited only a slightly enhanced rate of photosystem I degradation under strong irradiation. The phylloquinone‐less ΔmenA mutant also grows photoautotrophically, albeit rather slowly and only at low light intensities. Under strong irradiation, ΔmenA retained its chlorophyll content, indicative of stable photosystems. ΔchlP may only be cultured photomixotrophically (due to the instability of both photosystems I and II). The increased accumulation of myxoxanthophyll in ΔchlP cells indicates photo‐oxidative stress even under moderate illumination. Under high‐light conditions, ΔchlP exhibited rapid degradation of photosystems I and II. In conclusion, the results demonstrate that chlorophyll a phytylation is important for the (photo)stability of photosystems I and II, which, in turn, is necessary for photoautotrophic growth and tolerance of high light in an oxygenic environment.  相似文献   

20.
Miscanthus sinensis Andersson grows naturally at the Hitachi mine. The root‐zone soil was acidic and contained high concentrations of Cu, Pb, Zn and exchangeable Al. Adventitious roots accumulated high concentrations of Al and Fe, but not other heavy metals. The purpose of this study was to elucidate the mechanism of tolerance of Al in M. sinensis, focusing on its chemical interaction with root endophytes. We isolated Chaetomium cupreum, which produced siderophores, from adventitious roots of M. sinensis via CAS assay. In inoculation tests, C. cupreum promoted M. sinensis seedling growth and increased Al and Fe uptake in the roots, although C. cupreum did not stimulate M. sinensis to produce Al detoxicants, such as citric and malic acids. Observation of the pattern of Al localization in the roots clarified that C. cupreum reduced Al toxicity in M. sinensis via compartmentalizing Al into fungal mycelia surrounding the roots and creating a less toxic Al‐localization pattern, allocating Al to the epidermis, endodermis and stele of roots. In conclusion, our results indicated that C. cupreum increases Al tolerance in M. sinensis growing at the acidic mine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号