首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios.  相似文献   

3.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

4.
The role of genetic architecture in adaptation to novel environments has received considerable attention when the source of adaptive variation is de novo mutation. Relatively less is known when the source of adaptive variation is inter- or intraspecific hybridization. We model hybridization between divergent source populations and subsequent colonization of an unoccupied novel environment using individual-based simulations to understand the influence of genetic architecture on the timing of colonization and the mode of adaptation. We find that two distinct categories of genetic architecture facilitate rapid colonization but that they do so in qualitatively different ways. For few and/or tightly linked loci, the mode of adaptation is via the recovery of adaptive parental genotypes. With many unlinked loci, the mode of adaptation is via the generation of novel hybrid genotypes. The first category results in the shortest colonization lag phases across the widest range of parameter space, but further adaptation is mutation limited. The second category takes longer and is more sensitive to genetic variance and dispersal rate, but can facilitate adaptation to environmental conditions that exceed the tolerance of parental populations. These findings have implications for understanding the origins of biological invasions and the success of hybrid populations.  相似文献   

5.
Genetic resources of forest trees are considered as a key factor for the persistence of forest ecosystems because the ability of tree species to survive under changing climate depends strongly on their intraspecific variation in climate response. Therefore, utilizing available genetic variation in climate response and planting alternative provenances suitable for future climatic conditions is considered as an important adaptation measure for forestry. On the other hand, the distribution of adaptive genetic diversity of many tree species is still unknown and the predicted shift of ecological zones and species’ distribution may threaten forest genetic resources that are important for adaptation. Here, we use Norway spruce in Austria as a case study to demonstrate the genetic variation in climate response and to analyse the existing network of genetic conservation units for its effectiveness to safeguard the hotspots of adaptive and neutral genetic diversity of this species. An analysis of the climate response of 480 provenances, clustered into 9 groups of climatically similar provenances, revealed high variation among provenance groups. The most productive and promising provenance clusters for future climates originate from three regions that today depict the warmest and driest areas of the natural spruce distribution in Austria. Gap analysis of the Austrian genetic conservation units in the EUFGIS Portal suggests adequate coverage of the genetic hotspots in southern parts of Austria, but not in eastern and northern Austria. Therefore conservation measures and sustainable utilization of the valuable genetic resources in these regions need to be expanded to cover their high adaptive genetic variation and local adaptation to a warmer climate. The study shows that current conservation efforts need to be evaluated for their effectiveness to protect genetic resources that are important for the survival of trees in a future climate.  相似文献   

6.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

7.
研究表型可塑性和遗传变异在植物表型分化中的相对作用,有助于预测全球环境变化下的植物群落组成和生态系统功能的变化。芦苇(Phragmites australis)是全球性广布的草本植物,种内变异丰富,在我国西北和东部均存在多个分化稳定的生态型,但中国芦苇在更大尺度上的表型研究还非常匮乏。将位于黄河上游的宁夏平原和黄河下游的黄河三角洲作为研究区域,通过野外调查和同质种植园实验对芦苇自然种群的植物功能性状变异进行观测。结果表明,无论在野外还是同质种植园,黄河三角洲芦苇的基径、叶长和叶宽均显著大于宁夏平原芦苇,说明两个地区的芦苇种群之间存在着受遗传决定的表型分化,这可能与两个地区间的降水等气候差异有关。在野外,宁夏芦苇的株高和叶厚显著大于黄河三角洲芦苇,但在同质园中差异消失或相反,说明株高、叶厚受环境影响较大,表型可塑性也是芦苇适应环境变化的重要机制。在同质种植园中,宁夏平原芦苇的叶片氮磷含量较低,但株数却显著多于黄河三角洲芦苇,反映了不同地区芦苇之间存在不同的适应策略,宁夏平原芦苇更偏向于高扩散率的杂草策略,而黄河三角洲芦苇更偏向于竞争策略。此外,宁夏平原芦苇的株高、叶长两个性状以及基径-比叶面积相关性在野外和同质园两个环境中存在一致性,表明了性状变异和权衡策略的遗传稳定性。综上,位于黄河上下游的芦苇种群间存在着适应性分化,这是表型可塑性和遗传变异共同作用的结果,不同来源芦苇对全球变化下的多重环境因子的响应还需要进一步研究。  相似文献   

8.
There is a critical need to understand patterns and causes of intraspecific variation in physiological performance in order to predict the distribution and dynamics of wild populations under natural and human‐induced environmental change. However, the usual explanation for trait differences, local adaptation, fails to account for the small‐scale phenotypic and genetic divergence observed in fishes and other species with dispersive early life stages. We tested the hypothesis that local‐scale variation in the strength of selective mortality in early life mediates the trait composition in later life stages. Through in situ experiments, we manipulated exposure to predators in the coral reef damselfish Dascyllus aruanus and examined consequences for subsequent growth performance under common garden conditions. Groups of 20 recently settled D. aruanus were outplanted to experimental coral colonies in Moorea lagoon and either exposed to natural predation mortality (52% mortality in three days) or protected from predators with cages for three days. After postsettlement mortality, predator‐exposed groups were shorter than predator‐protected ones, while groups with lower survival were in better condition, suggesting that predators removed the longer, thinner individuals. Growth of both treatment groups was subsequently compared under common conditions. We did not detect consequences of predator exposure for subsequent growth performance: Growth over the following 37 days was not affected by the prior predator treatment or survival. Genotyping at 10 microsatellite loci did indicate, however, that predator exposure significantly influenced the genetic composition of groups. We conclude that postsettlement mortality did not have carryover effects on the subsequent growth performance of cohorts in this instance, despite evidence for directional selection during the initial mortality phase.  相似文献   

9.
Genetic adaptation and phenotypic plasticity are two ways in which organisms can adapt to local environmental conditions. We examined genetic and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen; normoxic) populations of an African cichlid fish, Pseudocrenilabrus multicolor victoriae. Larger gills and smaller brains should be advantageous when oxygen is low, and we hypothesized that the relative contribution of local genetic adaptation vs. phenotypic plasticity should be related to potential for dispersal between environments (because of gene flow’s constraint on local genetic adaptation). We conducted a laboratory‐rearing experiment, with broods from multiple populations raised under high‐oxygen and low‐oxygen conditions. We found that most of the variation in gill size was because of plasticity. However, both plastic and genetic effects on brain mass were detected, as were genetic effects on brain mass plasticity. F1 offspring from populations with the highest potential for dispersal between environments had characteristically smaller and more plastic brains. This phenotypic pattern might be adaptive in the face of gene flow, if smaller brains and increased plasticity confer higher average fitness across environment types.  相似文献   

10.
Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, Pinus torreyana Parry, is one of the rarest pines in the world, restricted to one mainland and one island population. Morphological differentiation between island and mainland populations suggests adaptation to local environments may have contributed to trait variation. The distribution of phenotypic variances within the common garden suggests distinct population‐specific growth trajectories underlay genetic differences, with the island population exhibiting substantially reduced genetic variance for growth relative to the mainland population. Furthermore, F1 hybrids, representing a cross between mainland and island trees, exhibit increased height accumulation and fecundity relative to mainland and island parents. This may indicate genetic rescue via intraspecific hybridization could provide the necessary genetic variation to persist in environments modified as a result of climate change. Long‐term common garden experiments, such as these, provide invaluable resources to assess the distribution of genetic variance that may inform conservation strategies to preserve evolutionary potential of rare species, including genetic rescue.  相似文献   

11.
The contribution of phenotypic plasticity to adaptation in Lacerta vivipara   总被引:1,自引:0,他引:1  
Correlation between intraspecific phenotypic variability and variation of environmental conditions could reflect adaptation. Different phenotypes may result from differential expression of a genotype in different environments (phenotypic plasticity) or from expression of different genotypes (genetic diversity). Populations of Lacerta vivipara exhibit larger adult body length, lower age at maturity, higher fecundity, and smaller neonatal size in humid habitats compared to dry habitats. We conducted reciprocal transplants of juvenile L. vivipara to test for the genetic or plastic origin of this variation. We captured gravid females from four populations that differed in the relative humidity of their habitats, and during the last 2 to 4 weeks of gestation, we manipulated heat and water availability under laboratory conditions. Juveniles were released into the different populations and families were divided to compare growth rate and survival of half-sibs in two environments. Growth rate and survival were assessed using capture-recapture techniques. Growth rate was plastic in response to postnatal conditions and did not differ between populations of origin. Survival differed between populations of origin, partially because of differences in neonatal body length. The response of juvenile body length and body condition to selection in the different habitats was affected by the population of origin. This result cannot be simply interpreted in terms of adaptation; however, phenotypic plasticity of fecundity or juvenile size most probably resulted in adaptive reproductive strategies. Adaptation to the habitat by means of genetic specialization was not detected. Further investigation is needed to discriminate between genetic and long-term maternal effects.  相似文献   

12.
When similar selection acts on the same traits in multiple species or populations, parallel evolution can result in similar phenotypic changes, yet the underlying molecular architecture of parallel phenotypic divergence can be variable. Maternal effects can influence evolution at ecological timescales and facilitate local adaptation, but their contribution to parallel adaptive divergence is unclear. In this study, we (i) tested for variation in embryonic acid tolerance in a common garden experiment and (ii) used molecular phenotyping of egg coats to investigate the molecular basis of maternally mediated parallel adaptive divergence in two amphibian species (Rana arvalis and Rana temporaria). Our results on three R. arvalis and two Rtemporaria populations show that adaptive divergence in embryonic acid tolerance is mediated via maternally derived egg coats in both species. We find extensive polymorphism in egg jelly coat glycoproteins within both species and that acid‐tolerant clutches have more negatively charged egg jelly – indicating that the glycosylation status of the jelly coat proteins is under divergent selection in acidified environments, likely due to its impact on jelly water balance. Overall, these data provide evidence for parallel mechanisms of adaptive divergence in two species. Our study highlights the importance of studying intraspecific molecular variation in egg coats and, specifically, their glycoproteins, to increase understanding of underlying forces maintaining variation in jelly coats.  相似文献   

13.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

14.
Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, Mantella aurantiaca, Mantella crocea, and Mantella milotympanum. Although our restriction site‐associated DNA (RAD) sequencing approach identified clear genetic clusters, they do not align with current species designations, which has important conservation implications for these imperiled frogs. Moreover, our results suggest that levels of intraspecific color variation within this group have been overestimated, while species diversity has been underestimated. Within major genetic clusters, we observed distinct patterns of variation including: populations that are phenotypically similar yet genetically distinct, populations where phenotypic and genetic breaks coincide, and populations that are genetically similar but have high levels of within‐population phenotypic variation. We also detected admixture between two of the major genetic clusters. Our study suggests that several mechanisms—including hybridization, selection, and drift—are contributing to phenotypic diversity. Ultimately, our work underscores the need for a reevaluation of how polymorphic and polytypic populations and species are classified, especially in aposematic organisms.  相似文献   

15.
Environmentally induced phenotypic plasticity is thought to play an important role in the adaption of plant populations to heterogeneous habitat conditions, and yet the importance of epigenetic variation as a mechanism of adaptive plasticity in natural plant populations still merits further research. In this study, we investigated populations of Vitex negundo var. heterophylla (Chinese chastetree) from adjacent habitat types at seven sampling sites. Using several functional traits, we detected a significant differentiation between habitat types. With amplified fragment length polymorphisms (AFLP) and methylation‐sensitive AFLP (MSAP), we found relatively high levels of genetic and epigenetic diversity but very low genetic and epigenetic differences between habitats within sites. Bayesian clustering showed a remarkable habitat‐related differentiation and more genetic loci associated with the habitat type than epigenetic, suggesting that the adaptation to the habitat is genetically based. However, we did not find any significant correlation between genetic or epigenetic variation and habitat using simple and partial Mantel tests. Moreover, we found no correlation between genetic and ecologically relevant phenotypic variation and a significant correlation between epigenetic and phenotypic variation. Although we did not find any direct relationship between epigenetic variation and habitat environment, our findings suggest that epigenetic variation may complement genetic variation as a source of functional phenotypic diversity associated with adaptation to the heterogeneous habitat in natural plant populations.  相似文献   

16.
Background and AimsThe observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation.MethodsA glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population.Key ResultsParental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins.ConclusionsA diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.  相似文献   

17.
Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration and natural selection. Switchgrass (Panicum virgatum L.) has strong genetic and adaptive differentiation despite life history characteristics that promote high levels of gene flow and can homogenize intraspecific differences, such as wind‐pollination and self‐incompatibility. To better understand how historical and contemporary factors shape variation in switchgrass, we use genotyping‐by‐sequencing to characterize switchgrass from across its range at 98 042 SNPs. Population structuring reflects biogeographic and ploidy differences within and between switchgrass ecotypes and indicates that biogeographic history, ploidy incompatibilities and differential adaptation each have important roles in shaping ecotypic differentiation in switchgrass. At one extreme, we determine that two Panicum taxa are not separate species but are actually conspecific, ecologically divergent types of switchgrass adapted to the extreme conditions of coastal sand dune habitats. Conversely, we identify natural hybrids among lowland and upland ecotypes and visualize their genome‐wide patterns of admixture. Furthermore, we determine that genetic differentiation between primarily tetraploid and octoploid lineages is not caused solely by ploidy differences. Rather, genetic diversity in primarily octoploid lineages is consistent with a history of admixture. This suggests that polyploidy in switchgrass is promoted by admixture of diverged lineages, which may be important for maintaining genetic differentiation between switchgrass ecotypes where they are sympatric. These results provide new insights into the mechanisms shaping variation in widespread species and provide a foundation for dissecting the genetic basis of adaptation in switchgrass.  相似文献   

18.
Systems biology is accumulating a wealth of understanding about the structure of genetic regulatory networks, leading to a more complete picture of the complex genotype–phenotype relationship. However, models of multivariate phenotypic evolution based on quantitative genetics have largely not incorporated a network‐based view of genetic variation. Here we model a set of two‐node, two‐phenotype genetic network motifs, covering a full range of regulatory interactions. We find that network interactions result in different patterns of mutational (co)variance at the phenotypic level (the M ‐matrix), not only across network motifs but also across phenotypic space within single motifs. This effect is due almost entirely to mutational input of additive genetic (co)variance. Variation in M has the effect of stretching and bending phenotypic space with respect to evolvability, analogous to the curvature of space–time under general relativity, and similar mathematical tools may apply in each case. We explored the consequences of curvature in mutational variation by simulating adaptation under divergent selection with gene flow. Both standing genetic variation (the G ‐matrix) and rate of adaptation are constrained by M , so that G and adaptive trajectories are curved across phenotypic space. Under weak selection the phenotypic mean at migration‐selection balance also depends on M .  相似文献   

19.
To understand the biology of organisms it is important to take into account the evolutionary forces that have acted on their constituent populations. Neutral genetic variation is often assumed to reflect variation in quantitative traits under selection, though with even low neutral divergence there can be substantial differentiation in quantitative genetic variation associated with locally adapted phenotypes. To study the relative roles of natural selection and genetic drift in shaping phenotypic variation, the levels of quantitative divergence based on phenotypes (PST) and neutral genetic divergence (FST) can be compared. Such a comparison was made between 10 populations of Finnish House Sparrows (= 238 individuals) collected in 2009 across the whole country. Phenotypic variation in tarsus‐length, wing‐length, bill‐depth, bill‐length and body mass were considered and 13 polymorphic microsatellite loci were analysed to quantify neutral genetic variation. Calculations of PST were based on Markov‐Chain Monte Carlo Bayesian estimates of phenotypic variances across and within populations. The robustness of the conclusions of the PSTFST comparison was evaluated by varying the proportion of variation due to additive genetic effects within and across populations. Our results suggest that body mass is under directional selection, whereas the divergence in other traits does not differ from neutral expectations. These findings suggest candidate traits for considering gene‐based studies of local adaptation. The recognition of locally adapted populations may be of value in the conservation of this declining species.  相似文献   

20.
Recent work has demonstrated that the presence or abundance of specific genotypes, populations, species and phylogenetic clades may influence community and ecosystem properties such as resilience or productivity. Many ecological studies, however, use simple linear models to test for such relationships, including species identity as the predictor variable and some measured trait or function as the response variable without accounting for the nestedness of genetic variation across levels of organization. This omission may lead to incorrect inference about which source of variation influences community and ecosystem properties. Here, we explicitly compare this common approach to alternative ways of modeling variation in trait data, using simulated trait data and empirical results of common‐garden trials using multiple levels of genetic variation within Eucalyptus, Populus and Picea. We show that: 1) when nested variation is ignored, an incorrect conclusion of species effect is drawn in up to 20% of cases; 2) overestimation of the species effect increases – up to 60% in some scenarios – as the nested term explains more of the variation; and 3) the sample sizes needed to overcome these potential problems associated with aggregating nested hierarchical variation may be impractically large. In common‐garden trials, incorporating nested models increased explanatory power twofold for mammal browsing rate in Eucalyptus, threefold for leaf area in Populus, and tenfold for branch number in Picea. Thoroughly measuring intraspecific variation and characterizing hierarchical genetic variation beyond the species level has implications for developing more robust theory in community ecology, managing invaded natural systems, and improving inference in biodiversity–ecosystem functioning research. Synthesis Until recently, ecologists acknowledged the ubiquity of within‐species trait variation, but paid scant attention to how much it affects communities and ecosystems. Here, the authors used simulated trait data and common‐garden studies to demonstrate that we ignore intraspecific trait variation at our peril. In both simulated and experimental systems, in many cases ignoring intraspecific variation led to incorrect statistical inferences and inflated the effect size of species identity. This study shows that ecologists must characterize hierarchically nested genetic and phenotypic variation to fully understand the links between individual traits, community structure and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号