共查询到20条相似文献,搜索用时 22 毫秒
1.
Yi‐Wen Liu Shao‐An Wang Tsung‐Yi Hsu Tsu‐An Chen Wen‐Chang Chang Jan‐Jong Hung 《Journal of cellular biochemistry》2010,110(6):1430-1438
Cyclooxygenase 2 (COX‐2) is an important inflammatory factor. Previous studies have indicated that COX‐2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS‐induced COX‐2 but it increased the COX‐2 level in RAW264.7 cells. We found no significant difference in NF‐κB activation and ERK1/2 phosphorylation, but LPS‐induced C/EBPδ expression was completely abolished after TSA treatment of LPS‐treated cells. Interesting, reporter assay of C/EBPδ promoter revealed that Sp1‐binding site is important. Although there was no alteration in c‐Jun levels, but the phosphorylation of c‐Jun at its C‐terminus was increased dramatically. A DNA‐associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c‐Jun was recruited via Sp1 to the promoter of C/EBPδ after LPS treatment; this recruitment of c‐Jun was repressed by TSA. C/EBPδ inhibition by TSA resulted in increased binding of C/EBPα and C/EBPβ to the COX‐2 promoter. Therefore, TSA has a positive effect on LPS‐induced COX‐2 since it decreases the C/EBPδ level by reducing c‐Jun recruitment by Sp1 to the C/EBPδ promoter, resulting in increased the recruitment of C/EBPα and C/EBPβ to the COX‐2 promoter. J. Cell. Biochem. 110: 1430–1438, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
2.
3.
4.
Rowida Raafat Ibrahim Rasha Osama El‐Esawy Mervat H. El‐Sakaa 《Journal of biochemical and molecular toxicology》2020,34(6)
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration. 相似文献
5.
Laura M Zidek Tobias Ackermann Götz Hartleben Sabrina Eichwald Gertrud Kortman Michael Kiehntopf Achim Leutz Nahum Sonenberg Zhao‐Qi Wang Julia von Maltzahn Cornelis F Calkhoven 《EMBO reports》2015,16(8):1022-1036
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E‐binding proteins (4E‐BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1‐associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ‐LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E‐BPs is required for suppression of LIP. Intriguingly, mice lacking the cis‐regulatory upstream open reading frame (uORF) in the C/EBPβ‐mRNA, which is required for mTORC1‐stimulated translation into C/EBPβ‐LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ‐isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity. 相似文献
6.
7.
CCAAT/enhancer‐binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin‐converting enzyme‐2 expression in diabetes 下载免费PDF全文
Yuanyuan Tie Chungang Zhai Ya Zhang Xiaoteng Qin Fangpu Yu Hongxuan Li MeiRong Shan Cheng Zhang 《Journal of cellular and molecular medicine》2018,22(3):1475-1488
8.
9.
10.
Takashi Yazawa Yoshitaka Imamichi Koh‐ichi Yuhki Junsuke Uwada Daisuke Mikami Masayuki Shimada Kaoru Miyamoto Takeshi Kitano Satoru Takahashi Toshio Sekiguchi Nobuo Suzuki Md. Rafiqul Islam Khan Fumitaka Ushikubi Akihiro Umezawa Takanobu Taniguchi 《Molecular reproduction and development》2019,86(7):786-797
11.
Jing Sun Hongxiang Mu Jia Yu Linwei Li Hongxia Yan Guoqing Li Hui Tan Nanyang Yang Xiaoyan Yang Lan Yi 《Journal of cellular and molecular medicine》2019,23(1):194-204
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL‐60 cell differentiation involves down‐regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS‐induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein‐α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL‐60 cells resulted in down‐regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL‐60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS‐mediated down‐regulation of CRT and up‐regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG‐rich element in the 3′ untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS‐induced leukaemic cell differentiation. 相似文献
12.
13.
14.
Yu‐Bao Liu Lu‐Pan Lin Rui Zou Qing‐Hua Zhao Fu‐Qing Lin 《Journal of cellular and molecular medicine》2019,23(6):3855-3866
As fracture healing is related to gene expression, fracture healing is prospected to be implicated in long non‐coding RNAs (lncRNAs). This study focuses on the effects of epigenetic silencing of long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) on fracture healing by regulating the Wnt/β‐catenin signalling pathway. Genes expressed in fracture were screened using bioinformatics and the subcellular location of MEG3 was determined using FISH. Next, we successfully established tibia fracture (TF) models of C57BL/6J and Col2a1‐ICAT mice and the effect of silencing lncRNA MEG3 on fracture healing was detected after TF mice were treated with phosphate buffer saline (PBS), MEG3 siRNA and scramble siRNA. X‐ray imaging, Safranin‐O/fast green and haematoxylin‐eosin (HE) staining and histomorphometrical and biomechanical analysis were adopted to observe and to detect the fracture healing conditions. Additionally, the positive expression of collagen II and osteocalcin was examined using immunohistochemistry. At last, in the in vitro experiment, the relationship of MEG3 and the Wnt/β‐catenin signalling pathway in fraction healing was investigated. MEG3 was located in the cell nucleus. In addition, it was found that MEG3 and the Wnt/β‐catenin signalling pathway were associated with fraction healing. Moreover, silencing MEG3 was proved to elevate callus area and maximum bending load and to furthermore enhance the recanalization of bone marrow cavity. Finally, MEG3 knockdown elevated levels of Col10a1, Runx2, Osterix, Osteocalcin, Wnt10b and β‐catenin/β‐catenin whereas it reduced p‐GSK‐3β/GSK‐3β levels. Taken together, our data supported that epigenetic silencing of lncRNA MEG3 could promote the tibia fracture healing by activating the Wnt/β‐catenin signalling pathway. 相似文献
15.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells. 相似文献
16.
17.
18.
19.
MicroRNA‐130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/β‐catenin pathway 下载免费PDF全文
Qiang Zhang Bin Zhang Leina Sun Qingna Yan Yu Zhang Zhenfa Zhang Yanjun Su Changli Wang 《Cell biochemistry and function》2018,36(4):194-202
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. 相似文献
20.
Hyejung Jung Heesung Chung Sung Eun Chang Sora Choi Inn‐Oc Han Duk‐Hee Kang Eok‐Soo Oh 《Pigment cell & melanoma research》2014,27(3):387-397
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases. 相似文献