首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation‐induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti‐inflammation and anti‐oxidative capacities in other diseases. In this study, we demonstrated that PD‐mitigated acute inflammation and late fibrosis caused by irradiation. PD treatment inhibited TGF‐β1‐Smad3 signalling pathway and epithelial–mesenchymal transition. Moreover, radiation‐induced imbalance of Th1/Th2 was also alleviated by PD treatment. Besides its free radical scavenging capacity, PD induced a huge increase of Sirt3 in culture cells and lung tissues. The level of Nrf2 and PGC1α in lung tissues was also elevated. In conclusion, our data showed that PD attenuated radiation‐induced lung injury through inhibiting epithelial–mesenchymal transition and increased the expression of Sirt3, suggesting PD as a novel potential radioprotector for RILI.  相似文献   

2.
3.
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic radiotherapy. This study was to investigate the protective effects of grape seed pro-anthocyanidins (GSPs), an efficient antioxidant and anti-carcinogenic agent, on RILI. In our study, it was demonstrated that acute and late RILI was ameliorated after GSPs treatment possibly through suppressing TGF-β1/Smad3/Snail signalling pathway and modulating the levels of cytokines (interferon-γ, IL-4 and IL-13) derived from Th1/Th2 cells. In addition, a sustained high level of PGE2 was also maintained by GSPs treatment to limited fibroblast functions. As shown by electron spin resonance spectrometry, GSPs could scavenge hydroxyl radical (•OH) in a dose-dependent manner, which might account for the mitigation of lipid peroxidation and consequent apoptosis of lung cells. In vitro, GSPs radiosensitized lung cancer cell A549 while mitigating radiation injury on normal alveolar epithelial cell RLE-6TN. In conclusion, the results showed that GSPs protects mice from RILI through scavenging free radicals and modulating RILI-associated cytokines, suggesting GSPs as a novel protective agent in RILI.  相似文献   

4.
5.
6.
Thyroid cancer is maintaining at a high incidence level and its carcinogenesis is mainly affected by a complex gene interaction. By analysis of the next‐generation resequencing of paired papillary thyroid cancer (PTC) and adjacent thyroid tissues, we found that Growth Associated Protein 43 (GAP43), a phosphoprotein activated by protein kinase C, might be novel markers associated with PTC. However, its function in thyroid carcinoma has been poorly understood. We discovered that GAP43 was significantly overexpressed in thyroid carcinoma and these results were consistent with that in The Cancer Genome Atlas (TCGA) cohort. In addition, some clinicopathological features of GAP43 in TCGA database showed that up‐regulated GAP43 is significantly connected to lymph node metastasis (P < 0.001) and tumour size (P = 0.038). In vitro experiments, loss of function experiments was performed to investigate GAP43 in PTC cell lines (TPC‐1 and BCPAP). The results proved that GAP43 knockdown in PTC cell significantly decreased the function of cell proliferation, colony formation, migration, and invasion and induced cell apoptosis. Furthermore, we also indicated that GAP43 could modulate the expression of epithelial‐mesenchymal transition‐related proteins, which could influence invasion and migration. Put those results together, GAP43 is a gene which was associated with PTC and might be a potential therapeutic target.  相似文献   

7.
8.
Tn antigen is a truncated O‐glycan, frequently detected in colorectal cancer (CRC), but its precise role in CRC metastasis is not well addressed. Here we investigated the effects of Core 1 β3Gal‐T specific molecular chaperone (Cosmc) deletion‐mediated Tn antigen exposure on CRC metastasis and its underlying mechanism. We first used CRISPR/Cas9 technology to knockout Cosmc, which is required for normal O‐glycosylation, and thereby obtained Tn‐positive CRC cells. We then investigated the biological consequences of Tn antigen expression in CRC. The results showed that Tn‐positive cells exhibited an enhanced metastatic capability both in vitro and in vivo. A further analysis indicated that Tn antigen expression induced typical activation of epithelial‐mesenchymal transition (EMT). Mechanistically, we found that H‐Ras, which is known to drive EMT, was markedly up‐regulated in Tn‐positive cells, whereas knockdown of H‐Ras suppressed Tn antigen induced activation of EMT. Furthermore, we confirmed that LS174T cells (Tn‐positive) transfected with wild‐type Cosmc, thus expressing no Tn antigen, had down‐regulation of H‐Ras expression and subsequent inhibition of EMT process. In addition, analysis of 438 samples in TCGA cohort demonstrated that Cosmc expression was reversely correlated with H‐Ras, underscoring the significance of Tn antigen‐H‐Ras signalling in CRC patients. These data demonstrated that Cosmc deletion‐mediated Tn antigen exposure promotes CRC metastasis, which is possibly mediated by H‐Ras‐induced EMT activation.  相似文献   

9.
10.
Methyl‐CpG‐binding protein 2 (MeCP2) is an important epigenetic regulator for normal neuronal maturation and brain glial cell function. Additionally, MeCP2 is also involved in a variety of cancers, such as breast, prostate, lung, liver and colorectal. However, whether MeCP2 contributes to the progression of breast cancer remains unknown. In the present study, we investigated the role of MeCP2 in cell proliferation, migration and invasion in vitro. We found that knockdown of MeCP2 inhibited expression of epithelial‐mesenchymal transition (EMT)‐related markers in breast cancer cell lines. In conclusion, our study suggests that MeCP2 inhibits proliferation and invasion through suppression of the EMT pathway in breast cancer.  相似文献   

11.
Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)‐β1‐induced epithelial–mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis. The mechanisms regulating interactions among MV, EMT and Src remain unclear. In this study, we suggested hypothesized that nintedanib can suppress MV‐augmented bleomycin‐induced EMT and pulmonary fibrosis by inhibiting the Src pathway. Five days after administrating bleomycin to mimic acute lung injury (ALI), C57BL/6 mice, either wild‐type or Src‐deficient were exposed to low tidal volume (VT) (6 ml/kg) or high VT (30 ml/kg) MV with room air for 5 hrs. Oral nintedanib was administered once daily in doses of 30, 60 and 100 mg/kg for 5 days before MV. Non‐ventilated mice were used as control groups. Following bleomycin exposure in wild‐type mice, high VT MV induced substantial increases in microvascular permeability, TGF‐β1, malondialdehyde, Masson's trichrome staining, collagen 1a1 gene expression, EMT (identified by colocalization of increased staining of α‐smooth muscle actin and decreased staining of E‐cadherin) and alveolar epithelial apoptosis (< 0.05). Oral nintedanib, which simulated genetic downregulation of Src signalling using Src‐deficient mice, dampened the MV‐augmented profibrotic mediators, EMT profile, epithelial apoptotic cell death and pathologic fibrotic scores (< 0.05). Our data indicate that nintedanib reduces high VT MV‐augmented EMT and pulmonary fibrosis after bleomycin‐induced ALI, partly by inhibiting the Src pathway.  相似文献   

12.
13.
Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment‐induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial‐mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E‐cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture‐mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture‐mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell‐containing microenvironments and MSC‐induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion.  相似文献   

14.
Endometriosis is a common, chronic gynaecologic disease affecting up to 10% of women in their reproductive age and leading to pain and infertility. Oestrogen (E2)‐induced epithelial‐mesenchymal transition (EMT) process has been considered as a key factor of endometriosis development. Recently, the dysregulated circular RNAs (circRNAs) have been discovered in endometriosis tissues. However, the molecular mechanism of circRNAs on the E2‐induced EMT process in endometriosis is still unknown. Here, we demonstrated that circ_0004712 up‐regulated by E2 treatment in endometrial epithelial cells. Knock‐down the expression of circ_0004712 significantly suppressed E2‐induced cell migration activity. Meanwhile, we identified miR‐148a‐3p as a potential target miRNA of circ_0004712. Inhibited the expression of miR‐148a‐3p could recovered the effect of circ_0004712 knock‐down in E2‐treated endometrial epithelial. Furthermore, Western blot assay showed that E2 treatment could increase the expression and activity of β‐catenin, snail and N‐cadherin and reduce the expression of E‐cadherin. The expression and activity of β‐catenin pathway were recovered by circ_0004712 knock‐down or miR‐148a‐3p overexpression. Altogether, the results demonstrate that circ_0004712/miR‐148a‐3p plays an important role in E2‐induced EMT process in the development of endometriosis, and the molecular mechanism may be associated with the β‐catenin pathway. This work highlighted the importance of circRNAs in the development of endometriosis and provide a new biomarker for diagnosis and therapies.  相似文献   

15.
Impairment spiral arteries remodelling was considered to be the underlying cause of pathogenesis of pre‐eclampsia (PE). Resveratrol (RE) was reported that it could modulate cellar phenotype to ameliorate diverse human diseases. However, the biological function of RE in PE remains poorly understood. In this report, we investigated the effect of RE on trophoblast phenotype both in vivo and in vitro. We conducted MTT and transwell assays to explore cell proliferation and invasion events in HTR‐8/SVneo. In mice model, the clinical characteristics of PE were established through the injection of NG‐nitro‐l ‐arginine methyl ester (L‐NAME). Furthermore, related experiments were performed to detect cellar phenotype‐associated signalling pathway, including epithelial‐mesenchymal transition (EMT) and Wnt/β‐catenin. Cell assays indicated that RE could increase trophoblasts migration and invasion. In addition, hypertension and proteinuria were markedly ameliorated by RE compared with the controls in PE mice model. Moreover, treatment by RE in trophoblasts or in PE model, we found that RE activated EMT progress through the regulation of E‐cadherin, β‐catenin, N‐cadherin, vimentin expression, and further altered the WNT‐related gene expression, including WNT1, WNT3 and WNT5B. Our findings demonstrated that RE might stimulate the invasive capability of human trophoblasts by promoting EMT and mediating the Wnt/β‐catenin pathway in PE.  相似文献   

16.
17.
18.
Although lung injury including fibrosis is a well‐documented side effect of lung irradiation, the mechanisms underlying its pathology are poorly understood. X‐rays are known to cause apoptosis in the alveolar epithelial cells of irradiated lungs, which results in fibrosis due to the proliferation and differentiation of fibroblasts and the deposition of collagen. Apoptosis and BH3‐only pro‐apoptotic proteins have been implicated in the pathogenesis of pulmonary fibrosis. Recently, we have established a clinically analogous experimental model that reflects focal high‐dose irradiation of the ipsilateral lung. The goal of this study was to elucidate the mechanism underlying radiation‐induced lung injury based on this model. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice for 14 days. About 9 days after irradiation, the mice began to show increased levels of the pro‐apoptotic protein Noxa in the irradiated lung alongside increased apoptosis and fibrosis. Suppression of Noxa expression by small interfering RNA protected cells from radiation‐induced cell death and decreased expression of fibrogenic markers. Furthermore, we showed that reactive oxygen species participate in Noxa‐mediated, radiation‐induced cell death. Taken together, our results show that Noxa is involved in X‐ray‐induced lung injury.  相似文献   

19.
Aberrant expression of Sialyl‐Tn (STn) antigen correlates with poor prognosis and reduced patient survival. We demonstrated that expression of Tn and STn in pancreatic ductal adenocarcinoma (PDAC) is due to hypermethylation of Co re 1 s ynthase specific m olecular c haperone (COSMC) and enhanced the malignant properties of PDAC cells with an unknown mechanism. To explore the mechanism, we have genetically deleted COSMC in PDAC cells to express truncated O‐glycans (SimpleCells, SC) which enhanced cell migration and invasion. Since epithelial‐to‐mesenchymal transition (EMT) play a vital role in metastasis, we have analysed the induction of EMT in SC cells. Expressions of the mesenchymal markers were significantly high in SC cells as compared to WT cells. Equally, we found reduced expressions of the epithelial markers in SC cells. Re‐expression of COSMC in SC cells reversed the induction of EMT. In addition to this, we also observed an increased cancer stem cell population in SC cells. Furthermore, orthotopic implantation of T3M4 SC cells into athymic nude mice resulted in significantly larger tumours and reduced animal survival. Altogether, these results suggest that aberrant expression of truncated O‐glycans in PDAC cells enhances the tumour aggressiveness through the induction of EMT and stemness properties.  相似文献   

20.
Under septic conditions, Lipopolysaccharide (LPS)‐induced apoptosis of lung vascular endothelial cells (ECs) triggers and aggravates acute lung injury (ALI), which so far has no effective therapeutic options. Genistein‐3′‐sodium sulphonate (GSS) is a derivative of native soy isoflavone, which has neuro‐protective effects through its anti‐apoptotic property. However, whether GSS protects against sepsis‐induced lung vascular endothelial cell apoptosis and ALI has not been determined. In this study, we found that LPS‐induced Myd88/NF‐κB/BCL‐2 signalling pathway activation and subsequent EC apoptosis were effectively down‐regulated by GSS in vitro. Furthermore, GSS not only reversed the sepsis‐induced BCL‐2 changes in expression in mouse lungs but also blocked sepsis‐associated lung vascular barrier disruption and ALI in vivo. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis‐induced ALI via its regulating effects on Myd88/NF‐κB/BCL‐2 signalling in lung ECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号