首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL-7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL-7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL-7 expression in mouse heart tissue increases following I/R injury and that IL-7 knockout or anti-IL-7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL-7 (rIL-7) supplementation induces opposite effects and the anti-IL-7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL-7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti-IL-7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti-IL-7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL-7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.  相似文献   

2.
Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial-independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled ‘Mitochondria as targets of acute cardioprotection’ and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.  相似文献   

3.
This study was aimed at investigating the effects of lncRNA AK139328 on myocardial ischaemia/reperfusion injury (MIRI) in diabetic mice. Ischaemia/reperfusion (I/R) model was constructed in normal mice (NM) and diabetic mice (DM). Microarray analysis was utilized to identify lncRNA AK139328 overexpressed in DM after myocardial ischaemia/reperfusion (MI/R). RT‐qPCR assay was utilized to investigate the expressions of lncRNA AK139328 and miR‐204‐3p in cardiomyocyte and tissues. Left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF) and fractioning shortening (FS) were obtained by transthoracic echocardiography. Haematoxylin‐eosin (HE) staining and Masson staining were utilized to detect the damage of myocardial tissues degradation of myocardial fibres and integrity of myocardial collagen fibres. Evans Blue/TTC staining was used to determine the myocardial infarct size. TUNEL staining was utilized to investigate cardiomyocyte apoptosis. The targeted relationship between lncRNA AK139328 and miR‐204‐3p was confirmed by dual‐luciferase reporter gene assay. MTT assay was used for analysis of cardiomyocyte proliferation. Western blot was utilized to investigate the expression of alpha smooth muscle actin (α‐SMA), Atg7, Atg5, LC3‐II/LC3‐I and p62 marking autophagy. Knockdown of lncRNA AK139328 relieved myocardial ischaemia/reperfusion injury in DM and inhibited cardiomyocyte autophagy as well as apoptosis of DM. LncRNA AK139328 modulated miR‐204‐3p directly. MiR‐204‐3p and knockdown of lncRNA AK139328 relieved hypoxia/reoxygenation injury via inhibiting cardiomyocyte autophagy. Silencing lncRNA AK139328 significantly increased miR‐204‐3p expression and inhibited cardiomyocyte autophagy, thereby attenuating MIRI in DM.  相似文献   

4.
Alleviating the oxidant stress associated with myocardial ischaemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischaemia reperfusion (I/R)-induced cardiac damage. It is reported that EGFR/erbB2 signalling is an important cardiac survival pathway in cardiac function and activation of EGFR has a cardiovascular effect in global ischaemia. Epidermal growth factor (EGF), a typical EGFR ligand, was considered to have a significant role in activating EGFR. However, no evidence has been published whether exogenous EGF has protective effects on myocardial ischaemia reperfusion. This study aims to investigate the effects of EGF in I/R-induced heart injury and to demonstrate its mechanisms. H9c2 cells challenged with H2O2 were used for in vitro biological activity and mechanistic studies. The malondialdehyde (MDA) and Superoxide Dismutase (SOD) levels in H9c2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse administrated with or without EGF were used for in vivo studies. Pretreatment of H9c2 cells with EGF activated Nrf2 signalling pathway, attenuated H2O2-increased MDA and H2O2-reduced SOD level, followed by the inhibition of H2O2-induced cell death. In in vivo animal models of myocardial I/R, administration of EGF reduced infarct size and myocardial apoptosis. These data support that EGF decreases oxidative stress and attenuates myocardial ischaemia reperfusion injury via activating Nrf2.  相似文献   

5.
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up‐regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose‐tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF‐Akt (protein kinase B)‐mammalian target of rapamycin (mTOR)‐NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by in vivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose‐induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF‐Akt‐mTOR‐NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers.  相似文献   

6.
Transforming growth factor β‐activated protein kinase 1 (TAK1) involves in various biological responses and is a key regulator of cell death. However, the role of TAK1 on acute myocardial ischaemia/reperfusion (MI/R) injury is unknown. We observed that TAK1 activation increased significantly after MI/R and hypoxia/reoxygenation (H/R), and we hypothesized that TAK1 has an important role in MI/R injury. Mice (TAK1 inhibiting by 5Z‐7‐oxozeaenol or silencing by AAV9 vector) were exposed to MI/R injury. Primary cardiomyocytes (TAK1 silencing by siRNA; and overexpressing TAK1 by adenovirus vector) were used to induce H/R injury model in vitro. Inhibition of TAK1 significantly decreased MI/R‐induced myocardial infarction area, reduced cell death and improved cardiac function. Mechanistically, TAK1 silencing suppressed MI/R‐induced myocardial oxidative stress and attenuated endoplasmic reticulum (ER) stress both in vitro and in vivo. In addition, the inhibition of ROS by NAC partially reversed the damage of TAK1 in vitro. Our study presents the first direct evidence that inhibition of TAK1 mitigated MI/R injury, and TAK1 mediated ROS/ER stress/apoptosis signal pathway is important for the pathogenesis of MI/R injury.  相似文献   

7.
Although reperfusion is the most effective therapy for patients with acute myocardial infarction, reperfusion injury limits the therapeutic effects of early reperfusion. Oxidative stress plays a crucial role in myocardial ischaemia/reperfusion (I/R) injury. Melatonin, a circulating hormone, is well-known as an antioxidant in cardiovascular diseases. In this short communication, we show that melatonin significantly improves post-ischaemic cardiac function, reduces infarct size and decreases oxidative stress. Furthermore, melatonin markedly increases AMPK activation and Nrf2 nuclear translocation. Nevertheless, these melatonin-induced changes are abrogated by compound C. In addition, ML-385, an Nrf2 inhibitor, also withdraws the antioxidative effects of melatonin but has little effect on AMPK activation. In conclusion, our results demonstrate that melatonin alleviates myocardial I/R injury by inhibiting oxidative stress via the AMPK/Nrf2 signalling pathway.  相似文献   

8.
9.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

10.
The insulin‐PI3K‐mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin‐sensitivity via insulin‐PI3K‐mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre‐treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p‐Akt, p‐mTOR and p‐p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre‐treatment abolished the effects of increased p‐mTOR and p‐p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin‐PI3K‐mTOR dependent pathway.  相似文献   

11.
Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R‐operated rats were divided into 4 groups: vehicle, apoptosis (Z‐vad), ferroptosis (Fer‐1) and necroptosis (Nec‐1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z‐vad (low and medium doses) or Fer‐1 (medium and high doses). Fer‐1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec‐1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.  相似文献   

12.
13.
14.
15.
The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1‐induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1‐induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col‐0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase β‐thioglucoside glucohydrolase (TGG)‐deficient double mutant tgg1 tgg2, rather than atypical myrosinase‐deficient mutant pen2‐2, is more sensitive to FB1 than Col‐0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG‐dependent IGS hydrolysis is involved in FB1‐induced PCD. Indole‐3‐acetonitrile (IAN) and indole‐3‐carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS‐scavenging ability. Despite the involvement of indole‐3‐acetic acid (IAA) in restricting FB1‐induced PCD, feeding of IAN and I3C attenuated FB1‐induced PCD in the IAA receptor mutant tir1‐1 just as in Col‐0. Taken together, our results indicate that TGG‐catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA‐independent way.  相似文献   

16.
We previously reported that nucleotide‐binding oligomerization domain‐containing protein (NOD) 2 was involved in the inflammatory responses to cerebral ischaemia/reperfusion (I/R) insult. However, the mechanism by which NOD2 participates in brain ischaemic injury and the regulation of NOD2 in the process are still obscure. Increased β‐arrestin 2 (ARRB2) expression was observed in microglia following cerebral I/R in wild‐type mice besides the up‐regulation of NOD2 and TRAF6. Stimulation of NOD2 by muramyl dipeptide (MDP) in BV2 cells induced the activation of NF‐κB by the phosphorylation of p65 subunit and the degradation of IκBα. Meanwhile, the protein level of Cyclooxygenase‐2 (COX‐2), the protein expression and activity of MMP‐9 were significantly increased in BV2 cells after administration of MDP. Furthermore, overexpression of ARRB2 significantly suppressed the inflammation induced by MDP, silence of ARRB2 significantly enhanced the inflammation induced by MDP in BV2 cells. In addition, we observed endogenous interaction of TRAF6 and ARRB2 after stimulation of MDP or cerebral I/R insult, indicating ARRB2 negatively regulates NOD2‐triggered inflammatory signalling pathway by associating with TRAF6 in microglia after cerebral I/R injury. Finally, the in vivo study clearly confirmed that ARRB2 negatively regulated NOD2‐induced inflammatory response, as ARRB2 deficiency exacerbated stroke outcomes and aggravated the NF‐κB signalling pathway induced by NOD2 stimulation after cerebral I/R injury. These findings revealed ARRB2 negatively regulated NOD2 signalling pathway through the association with TRAF6 in cerebral I/R injury.  相似文献   

17.
Time‐restricted feeding (TRF), that is, no caloric intake for 14‐16 hours each day leads to favourable nutritional outcomes. This study is the first to investigate TRF through a surgical perspective verifying its efficacy against liver ischaemia reperfusion (I/R) injury. We randomly assigned 100 10‐week‐old wild‐type male C57BL/6 mice into two feeding regimens: TRF and ad libitum access to food. Main outcomes were evaluated at 6, 12 and 24 hours post‐I/R surgery after 12 weeks of intervention. TRF group demonstrated minor liver injury via histological study; lower serum levels of liver enzymes, glucose and lipids; higher concentrations of free fatty acid and β‐hydroxybutyrate; decreased oxidative stress and inflammatory biomarkers; as well as less severe cell apoptosis and proliferation. Further exploration indicated better gut microenvironment and intestinal epithelial tight junction function. TRF employed its positive influence on a wide spectrum of biochemical pathways and ultimately revealed protective effect against hepatic I/R injury possibly through adjusting the gut microbiota. The results referred to a strong indication of adopting better feeding pattern for surgical patients.  相似文献   

18.
Thrombolysis remains the only effective therapy to reverse acute ischaemic stroke. However, delayed treatment may cause serious complications including hemorrhagic transformation and reperfusion injury. The level of lipocalin‐2 (LCN2) is elevated in the plasma of ischaemic stroke patients, but its role in stroke is unknown. Here, we show that LCN2 was acutely induced in mice after ischaemic stroke and is an important mediator of reperfusion injury. Increased levels of LCN2 were observed in mouse serum as early as 1 hr after transient middle cerebral artery occlusion (tMCAO), reaching peak levels at 23 hrs. LCN2 was also detected in neutrophils infiltrating into the ipsilateral hemisphere, as well as a subset of astrocytes after tMCAO, but not in neurons and microglia. Stroke injury, neurological deficits and infiltration of immune cells were markedly diminished in LCN2 null mice after tMCAO, but not after permanent MCAO (pMCAO). In vitro, recombinant LCN2 protein induced apoptosis in primary cultured neurons in a dose‐dependent manner. Our results demonstrate that LCN2 is a neurotoxic factor secreted rapidly in response to cerebral ischaemia, suggesting its potential usage as an early stroke biomarker and a novel therapeutic target to reduce stroke‐reperfusion injury.  相似文献   

19.
Inflammatory response plays an important role in ischaemia reperfusion injury (IRI) through a variety of inflammatory cells. Apart from neutrophils, macrophages and lymphocytes, the role of dendritic cells (DCs) in IRI has been noticed. The study was aimed at investigating whether the high‐mobility group protein box‐1/toll like receptor 4 (HMGB1/TLR4) signalling pathway regulate the migration, adhesion and aggregation of DCs to the myocardium, induce DCs activation and maturation, stimulate the expression of surface costimulatory molecules and participate in myocardial IRI. In vivo, migration, adhesion, and aggregation of DCs was enhanced; the expression of peripheral blood DCs CD80 and CD86, myocardial adhesion molecules were increased; and the infarct size was increased during myocardial ischaemia reperfusion injury myocardial ischemic/reperfusion injury (MI/RI). These responses induced by MI/RI were significantly inhibited by HMGB1 specific neutralizing antibody treatment. Cellular experiments confirmed that HMGB1 promoted the release of inflammatory cytokines through TLR4/MyD88/NF‐κB, upregulated CD80 and CD86 expression, mediated the damage of cardiomyocytes and accelerated the apoptosis. Our results indicate that DCs activation and maturation, stimulate the expression of surface costimulatory molecules by promoting the release of inflammatory factors through NF‐κB pathway and participate in myocardial IRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号