首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC‐I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC‐I genotype/diversity on mate choice or survival. However, we demonstrate that MHC‐I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2–8 linked MHC‐I loci. Within‐locus homozygosity is high, contributing to low population‐wide diversity. Conversely, each individual had comparably many alleles, 6–16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within‐individual MHC‐I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species’ adaptive potential.  相似文献   

2.
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC‐disassortative mate choice. However, many species lack this expected pattern of MHC‐disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus‐specific primers for high‐throughput sequencing of two expressed MHC Class II B genes in Leach's storm‐petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene‐specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC‐dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.  相似文献   

3.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

4.
Sexual selection involving genetically disassortative mate choice is one of several evolutionary processes that can maintain or enhance population genetic variability. Examples of reproductive systems in which choosers (generally females) select mates depending on their major histocompatibility complex (MHC) genes have been reported for several vertebrate species. Notably, the role of MHC‐dependent choice not in mating contexts, but in other kinds of social interactions such as in the establishment of complex social systems, has not yet drawn significant scientific interest and is virtually absent from the literature. We have investigated male and female MHC‐dependent choice in an invasive population of North American raccoons (Procyon lotor) in Germany. Both male and female raccoons rely on olfaction for individual recognition. Males have an unusually complex social system in which older individuals choose unrelated younger ones to form stable male coalitions that defend territories and a monopoly over females. We have confirmed that females perform MHC‐disassortative mate choice and that this behaviour fosters genetic diversity of offspring. We have also observed that males build coalitions by choosing male partners depending on their MHC, but in an assortative manner. This is the first observation of antagonistic MHC‐dependent behaviours among sexes. We show that this is the only combination of MHC‐dependent partner choice that leads to outbreeding. In the case of introduced raccoons, such behaviours can act together to promote the invasive potential of the species by increasing its adaptive genetic divergence.  相似文献   

5.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

6.
Genes of the major histocompatibility complex (MHC) are essential in vertebrate adaptive immunity, and they are highly diverse and duplicated in many lineages. While it is widely established that pathogen‐mediated selection maintains MHC diversity through balancing selection, the role of mate choice in shaping MHC diversity is debated. Here, we investigate female mating preferences for MHC class II (MHCII) in the bluethroat (Luscinia svecica), a passerine bird with high levels of extra‐pair paternity and extremely duplicated MHCII. We genotyped family samples with mixed brood paternity and categorized their MHCII alleles according to their functional properties in peptide binding. Our results strongly indicate that females select extra‐pair males in a nonrandom, self‐matching manner that provides offspring with an allelic repertoire size closer to the population mean, as compared to offspring sired by the social male. This is consistent with a compatible genes model for extra‐pair mate choice where the optimal allelic diversity is intermediate, not maximal. This golden mean presumably reflects a trade‐off between maximizing pathogen recognition benefits and minimizing autoimmunity costs. Our study exemplifies how mate choice can reduce the population variance in individual MHC diversity and exert strong stabilizing selection on the trait. It also supports the hypothesis that extra‐pair mating is adaptive through altered genetic constitution in offspring.  相似文献   

7.
Sexual selection hypotheses stipulate that the major histocompatibility complex genes (MHC) constitute a key molecular underpinning for mate choice in vertebrates. The last four decades saw growing empirical literature on the role of MHC diversity and dissimilarity in mate choice for a wide range of vertebrate animals, but with mixed support for its significance in natural populations. Using formal phylogenetic meta‐analysis and meta‐regression techniques, we quantitatively review the existing literature on MHC‐dependent mating preferences in nonhuman vertebrates with a focus on the role of MHC diversity and dissimilarity. Overall, we found small, statistically nonsignificant, average effect sizes for both diversity‐ and dissimilarity‐based mate choice (= 0.113 and 0.064, respectively). Importantly, however, meta‐regression models revealed statistically significant support regarding female choice for diversity, and choice for dissimilarity (regardless of choosy sex) only when dissimilarity is characterized across multiple loci. Little difference was found among vertebrate taxa; however, the lack of statistical power meant statistically significant effects were limited to some taxa. We found little sign of publication bias; thus, our results are likely to be robust. In light of our quantitative assessment, methodological improvements and fruitful future avenues of research are highlighted.  相似文献   

8.
To investigate and disentangle the role of major histocompatibility complex (MHC)‐based ‘good genes' and ‘compatible genes' in mate choice, three‐spined sticklebacks Gasterosteus aculeatus with specific MHC IIB genotypes were allowed to reproduce in an outdoor enclosure system. Here, fish were protected from predators but encountered their natural parasites. Mate choice for an intermediate genetic distance between parental MHC genotypes was observed, which would result in intermediate diversity in the offspring, but no mate choice based on good genes was found under the current semi‐natural conditions. Investigation of immunological variables revealed that the less‐specific innate immune system was more active in individuals with a genetically more divergent MHC allele repertoire. This suggests the need to compensate for an MHC‐diminished T‐cell repertoire and potentially explains the observed mate choice for intermediate MHC genetic distance. The present findings support a general pattern of mate choice for intermediate MHC diversity (i.e. compatible genes). In addition, the potentially dynamic role of MHC good genes in mate choice under different parasite pressures is discussed in the light of present and previous results.  相似文献   

9.
How mate preferences evolve in the first place has been a major conundrum for sexual selection. Some hypotheses explaining this assume fitness benefit derived from subsequent generations. Major histocompatibility complex (MHC)‐based mate choice is a representative example of the mate choice that is associated with such trans‐generational mechanisms. To provide evidences for fitness benefit of MHC‐based mate choice, previous studies assessed the association between own MHC genotype and own fitness components. However, the association between MHC‐based mate choice in the parental generation and fitness components in the resultant offspring generation has only rarely been measured in wild populations. Focusing on the isolated population of the monogamous Ryukyu Scops Owl (Otus elegans interpositus) on Minami‐daito Island, Japan, we found evidence of MHC‐based mate choice. However, we found no evidence of MHC‐based mate choice increasing own reproductive success or offspring survival. This is a rare case study that directly examines the existence of the trans‐generational indirect benefit of MHC‐based mate choice for genetic compatibility from trans‐generational data in a wild bird population. By investigating the fitness benefits of mate choice, this study serves to facilitate our understanding of the evolution of MHC‐based mate choice.  相似文献   

10.
During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well‐studied, re‐introduced population of the threatened Stewart Island robin (= 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll‐like receptor (TLR) genes, over a 9‐year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first‐year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two‐fold excess over Hardy–Weinberg expectation, was increased by nonrandom mating. Near‐complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome‐level association of the TLR4E allele with ‘good genes’. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment.  相似文献   

11.
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene‐rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc‐DRB and neutral loci. Nevertheless, the age structure of Mhc‐DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within‐group outbreeding, resulting from group‐living and sex‐biased dispersal, might weaken selection for MHC‐disassortative mate choice.  相似文献   

12.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   

13.
Chinook salmon (Oncorhynchus tshawytscha) exhibit extreme differences in coloration of skin, eggs and flesh due to genetic polymorphisms affecting carotenoid deposition, where colour can range from white to bright red. A sympatric population of red and white Chinook salmon occurs in the Quesnel River, British Columbia, where frequencies of each phenotype are relatively equal. In our study, we examined evolutionary mechanisms responsible for the maintenance of the morphs, where we first tested whether morphs were reproductively isolated using microsatellite genotyping, and second, using breeding trials in seminatural spawning channels, we tested whether colour assortative mate choice could be operating to maintain the polymorphism in nature. Next, given extreme difference in carotenoid assimilation and the importance of carotenoids to immune function, we examined mate choice and selection between colour morphs at immune genes (major histocompatibility complex genes: MHC I‐A1 and MHC II‐B1). In our study, red and white individuals were found to interbreed, and under seminatural conditions, some degree of colour assortative mate choice (71% of matings) was observed. We found significant genetic differences at both MHC genes between morphs, but no evidence of MHC II‐B1‐based mate choice. White individuals were more heterozygous at MHC II‐B1 compared with red individuals, and morphs showed significant allele frequency differences at MHC I‐A1. Although colour assortative mate choice is likely not a primary mechanism maintaining the polymorphisms in the population, our results suggest that selection is operating differentially at immune genes in red and white Chinook salmon, possibly due to differences in carotenoid utilization.  相似文献   

14.
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

15.
Females should prefer to be fertilized by males that increase the genetic quality of their offspring. In vertebrates, genes of the major histocompatibility complex (MHC) play a key role in the acquired immune response and have been shown to affect mating preferences. They are therefore important candidates for the link between mate choice and indirect genetic benefits. Higher MHC diversity may be advantageous because this allows a wider range of pathogens to be detected and combated. Furthermore, individuals harbouring rare MHC alleles might better resist pathogen variants that have evolved to evade common MHC alleles. In the Seychelles warbler, females paired with low MHC‐diversity males elevate the MHC diversity of their offspring to levels comparable to the population mean by gaining extra‐pair fertilizations. Here, we investigate whether increased MHC diversity results in higher life expectancy and whether there are any additional benefits of extra‐pair fertilizations. Our 10‐year study found a positive association between MHC diversity and juvenile survival, but no additional survival advantage of extra‐pair fertilizations. In addition, offspring with a specific allele (Ase‐ua4) had a fivefold longer life expectancy than offspring without this allele. Consequently, the interacting effects of sexual selection and pathogen‐mediated viability selection appear to be important for maintaining MHC variation in the Seychelles warbler. Our study supports the prediction that MHC‐dependent extra‐pair fertilizations result in genetic benefits for offspring in natural populations. However, such genetic benefits might be hidden and not necessarily apparent in the widely used fitness comparison of extra‐ and within‐pair offspring.  相似文献   

16.
The capacity of an individual to battle infection is an important fitness determinant in wild vertebrate populations. The major histocompatibility complex (MHC) genes are crucial for a host's adaptive immune system to detect pathogens. However, anthropogenic activities may disrupt natural cycles of co‐evolution between hosts and pathogens. In this study, we investigated the dynamic sequence and expression variation of host parasite interactions in brook charr (Salvelinus fontinalis) in a context of past human disturbance via population supplementation from domestic individuals. To do so, we developed a new method to examine selection shaping MHC diversity within and between populations and found a complex interplay between neutral and selective processes that varied between lakes that were investigated. We provided evidence for a lower introgression rate of domestic alleles and found that parasite infection increased with domestic genomic background of individuals. We also documented an association between individual MHC alleles and parasite taxa. Finally, longer cis‐regulatory minisatellites were positively correlated with MHC II down‐regulation and domestic admixture, suggesting that inadvertent selection during domestication resulted in a lower immune response capacity, through a trade‐off between growth and immunity, which explained the negative selection of domestic alleles at least under certain circumstances.  相似文献   

17.
18.
19.
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen‐mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high‐throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long‐term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease.  相似文献   

20.
To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour‐producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent‐producing body surfaces. Here, using high‐throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC‐based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical‐producing microbiota in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号