共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to identify soil nutrient availability conditions that would allow the establishment of key species of the Molinia caerulea‐Cirsium dissectum fen meadow. The restoration site was a species‐poor agriculturally improved pasture that had received no inorganic fertilizer for greater than 13 years. Treatments designed to reduce site fertility included: cutting and removal of herbage, cultivation, fallowing and topsoil removal. Straw and/or lignitic‐clay were incorporated as soil amendment treatments. Cirsio‐Molinietum species were either sown or planted as seedlings on treated plots. Neither soil nitrogen nor potassium availability, per se, appeared to limit the establishment of Cirsio‐Molinietum species, whereas enhanced phosphorus availability did. Removal of the top 15–20 cm of soil reduced the total soil phosphorus amount by about 85 percent and depleted plant P availability. Nutrient‐poor and relatively calcium‐enriched soil exposed by topsoil removal allowed the development of a community with affinities to the Cirsio‐Molinietum typical fen meadow. Redundancy analysis indicated the existence of marked vegetational gradients within the topsoil removal treatments that were influenced by the straw and the lignitic‐clay amendments. The way in which these two amendments influenced edaphic conditions were unclear. Where the topsoil was not removed the vegetation became dominated by a few competitive species and although many of the planted Cirsio‐Molinietum species were still present after four years, they were found only in trace amounts. Removal of most of the soil organic matter was a practical success in that it created suitable edaphic conditions for all the planted Cirsio‐Molinietum species to remain well established. 相似文献
2.
S. R. Ganihar 《Restoration Ecology》2003,11(4):475-482
Abstract The effects of the earthworm Pontoscolex corethrurus (Muller) on the rate of mineralization of cattle dung‐amended iron (Fe2 + ) ore mine wastes and its preference for partially decomposed leaf litter with contrasting chemical composition were studied in pot trials. The growth and survival rates of earthworms showed significant positive correlations with percent of organic matter. During 96 days of exposure, the earthworms significantly increased exchangeable Ca2 + , Mg2 + , PO43 ? and NH4‐N. Iron ore mine wastes amended with 5–10% organic matter supported earthworm fauna better than mine wastes amended with 0–3% organic matter. The leaf litter preference shown by the earthworm was, in descending order, Phyllanthus reticulatus, Tamarindus indica, Anacardium occidentale, Casuarina equisetifolia, Acacia auriculiformis, and Eucalyptus camaldulensis. A significant positive correlation was observed between the survival and growth rates of earthworms and the nutrient contents of partially decomposed leaf litter. The first three plant species were significantly richer in nutrients, mainly organic carbon, calcium, phosphorus, and nitrogen, than the other two plant species. Acacia auriculiformis and E. camaldulensis litter were preferred less because of their high lignin and polyphenolic compounds, despite being rich in other macronutrients like nitrogen and phosphorus. It is concluded that the introduction of P. corethrurus to cattle dung‐amended (5–10%) iron ore mine wastes or revegetation of the sites with P. reticulatus, T. indica, and A. occidentale plant species should be attempted before earthworm introduction. The litter from these species acts as a source of food for earthworms, thereby hastening the process of restoration of abandoned iron ore mines of Goa, India. 相似文献
3.
The use of Technosols for the restoration of limestone quarries overcomes the usual “in situ” scarcity of soil and/or its poor quality. The use of mine spoils, improved with mineral and/or organic amendments, could be an efficient and environmentally friendly option. Properly treated sewage sludge from urban wastewater treatment plants could be a suitable organic amendment and fertilizer (rich in N and P) whenever its pollutant burden is low (heavy metals and/or organic pollutants). Its appropriate use could improve essential soil physical and chemical properties and, therefore, promote key ecosystem services of restored areas, such as biomass production and carbon sequestration, as well as biodiversity and landscape recovery. However, the mid‐term impacts of these restoration practices on soil functioning and their services have rarely been reported in the available literature. In this study we assess the mid‐term effects (10 years) of the use of sewage sludge as a Technosol amendment on soil organic carbon (SOC), nutrient status, and plant development in several restored quarries. Soils restored using sewage sludge showed a threefold increase in SOC compared to the corresponding unamended ones, despite the moderate sludge dosage applied (below 50 tonnes/ha). Plant cover was also higher in amended soils, and recruitment was not affected by sludge amendment at these doses. This study demonstrates that, used at an appropriate rate, sewage sludge is a good alternative for the valorization of mine spoils in quarry restoration, improving some important regulatory ecosystem services such as carbon sequestration, without compromising woody plant encroachment. 相似文献
4.
过度放牧导致滇西北高寒湿地碳汇功能逐渐丧失,围栏禁牧作为一种有效的湿地恢复方式,其对滇西北高寒湿地土壤碳库的影响尚缺乏研究。为探明围栏禁牧对滇西北高寒湿地土壤活性有机碳的影响,以纳帕海湿地不同禁牧年限(未禁牧、禁牧3年、禁牧8年、禁牧10年)的草甸和沼泽化草甸作为研究对象,对比分析不同禁牧年限草甸和沼泽化草甸土壤总有机碳(TOC)、颗粒有机碳(POC)、溶解性有机碳(DOC)、易氧化有机碳(EOC)和微生物生物量碳(MBC)含量特征。研究结果表明,随着禁牧年限的增加(<10 a),草甸和沼泽化草甸土壤TOC、DOC、EOC、MBC含量显著增加(P<0.05);随着土壤深度的增加,草甸和沼泽化草甸土壤TOC、EOC和MBC含量逐渐下降,而POC和DOC含量逐渐增加。土壤理化性质显著影响土壤活性有机碳各组分含量,其中总氮(TN)是影响草甸和沼泽化草甸土壤活性有机碳各组分含量的主导因素。围栏禁牧有利于滇西北高寒湿地土壤质量和固碳能力的恢复,且随着禁牧年限的增加,恢复效果越明显。相同恢复年限,纳帕海沼泽化草甸土壤恢复效果比草甸土壤显著。研究可以为放牧湿地恢复研究提供理论基础。 相似文献
5.
Efforts to eradicate invasive plants in restorations can unintentionally create conditions that favor reinvasion over the establishment of desired species, especially when remnant invasive propagules persist. Reducing resources needed by the invader for seedling establishment, however, may be an effective strategy to prevent reinvasion. Propagules of Phalaris arundinacea persist after removal from sedge meadow wetlands and reestablish quickly in posteradication conditions, hindering community restoration. A study was conducted in two experimental wetlands with controlled hydrologic regimes to determine if reducing light by sowing short‐lived, nonpersistent native cover crops or immobilizing soil N by incorporating soil–sawdust amendments can prevent Phalaris reinvasion, allowing native communities to recover. A 10‐species perennial target community and Phalaris were sown with high‐diversity, low‐diversity, or no cover crops in soils with or without sawdust, and seedling emergence, establishment, and growth were measured. High‐diversity cover crops reduced light, decreasing Phalaris and target community seedling establishment by 89 and 57%, respectively. Short‐term nitrogen reduction in sawdust‐amended soils delayed Phalaris seedling emergence and decreased Phalaris seedling establishment by 59% but did not affect total target community seedling establishment. The target community reduced Phalaris seedling establishment as effectively as cover crops did. In plots where the target community was grown, amending soils with sawdust further reduced Phalaris seedling growth but not establishment. Results show that use of cover crops can reduce seedling establishment of desired species and is counterproductive to restoration goals. Further, establishing target species is more important and practical for limiting Phalaris reinvasion than is immobilizing nitrogen. 相似文献
6.
Fifteen Years of Vegetation and Soil Development after Brackish-Water Marsh Creation 总被引:12,自引:0,他引:12
Aboveground biomass, macro‐organic matter (MOM), and wetland soil characteristics were measured periodically between 1983 and 1998 in a created brackish‐water marsh and a nearby natural marsh along the Pamlico River estuary, North Carolina to evaluate the development of wetland vegetation and soil dependent functions after marsh creation. Development of aboveground biomass and MOM was dependent on elevation and frequency of tidal inundation. Aboveground biomass of Spartina alterniflora, which occupied low elevations along tidal creeks and was inundated frequently, developed to levels similar to the natural marsh (750 to 1,300 g/m2) within three years after creation. Spartina cynosuroides, which dominated interior areas of the marsh and was flooded less frequently, required 9 years to consistently achieve aboveground biomass equivalent to the natural marsh (600 to 1,560 g/m2). Aboveground biomass of Spartina patens, which was planted at the highest elevations along the terrestrial margin and seldom flooded, never consistently developed aboveground biomass comparable with the natural marsh during the 15 years after marsh creation. MOM (0 to 10 cm) generally developed at the same rate as aboveground biomass. Between 1988 and 1998, soil bulk density decreased and porosity and organic C and N pools increased in the created marsh. Like vegetation, wetland soil development proceeded faster in response to increased inundation, especially in the streamside zone dominated by S. alterniflora. We estimated that in the streamside and interior zones, an additional 30 years (nitrogen) to 90 years (organic C, porosity) are needed for the upper 30 cm of created marsh soil to become equivalent to the natural marsh. Wetland soil characteristics of the S. patens community along upland fringe will take longer to develop, more than 200 years. Development of the benthic invertebrate‐based food web, which depends on organic matter enrichment of the upper 5 to 10 cm of soil, is expected to take less time. Wetland soil characteristics and functions of created irregularly flooded brackish marshes require longer to develop compared with regularly flooded salt marshes because reduced tidal inundation slows wetland vegetation and soil development. The hydrologic regime (regularly vs. irregularly flooded) of the “target” wetland should be considered when setting realistic expectations for success criteria of created and restored wetlands. 相似文献
7.
8.
9.
表土在日本植被恢复中的应用 总被引:3,自引:1,他引:2
土壤种子库具有区域特有的物种组成和遗传特性,对维持物种多样性和种群密度起到重要作用.表土是具有植被恢复潜在能力的绿化材料.本文在参考大量日本文献的基础上,介绍了利用表土进行植被恢复的特点及分类,从表土混合比例、坡面环境、表土采集深度等3个方面归纳分析了利用表土进行植被恢复的方式,介绍了其在森林、道路、湿地、废弃地等不同类型生境中的应用.最后针对表土在植被恢复应用中存在的问题提出了今后的研究课题:应加强表土在植被恢复中的应用研究,明确绿化技术、恢复目标及表土作为绿化材料的适用性调查方法和标准,开发低成本、高效率的新型表土利用方法. 相似文献
10.
By Terry D. Coates 《Ecological Management & Restoration》2003,4(2):133-139
Summary Recent studies have recognized the potential of broad‐scale surface application of smoke compounds for enhancing germination from the soil seed‐bank in fire‐prone vegetation communities. Results suggest that smoke technology may play, in the future, a significant role in the restoration and management of areas supporting indigenous vegetation. An important step in the development of smoke‐based restoration tools is the conduct of in situ field trials in a range of geographical locations and environmental conditions. However, most of the published work on the effectiveness of smoke products in promoting seedbank germination has been conducted at sites in southwestern Australia. The present study examines the effect of commercially available smoke‐water products on the regeneration of a highly disturbed former mine‐site at the Royal Botanic Gardens Cranbourne, in southeastern Victoria. Various combinations of concentrated smoke products and topsoil harvested from a nearby heathy woodland community were applied to exposed, uniform mineral sands to test their effect on seedling density and species richness of regrowth. The trials showed that after 12 months a number of common, herbaceous species including Austrodanthonia setacea, Opercularia varia and Platysace heterophylla were recorded in significantly higher numbers in areas treated with a commercial smoke‐water. However, there was no overall improvement in the density of seedlings or the richness of species as a result of the application of the smoke products. Similarly, total seedling density and species richness were not affected by the addition of topsoil, either alone or in combination with smoke products. 相似文献
11.
In a field trial, the efficacy of various organic amendments, ploughing and nematicides was found to be highly efficacious against commonly occurring phytonematodes. The management of phytonematodes requires the carefully integrated combination of several methods. Although each individual method of management has a limited use, together, they help in reducing the phytonematode populations in agricultural soils or in plants. Integrated pest management (IPM) provides a working methodology for the pest management in sustainable agricultural systems. The integrated application of organic amendment and ploughing was very effective to control the phytonematodes infecting tomato. The soil populations of phytonematodes were significantly reduced by the integrated application of organic amendment and ploughing. As a consequence of nematode suppression, plant growth of tomato improved. The efficacy of these treatments was enhanced in deep ploughed beds when compared with normal ploughed beds. 相似文献
12.
In the northern Great Plains (United States), sites with less than 20% of native species are difficult to restore. We have experimented with a restoration method that shows some promise. It consists of systematically installing simulated small‐scale patches (8.0 m2 in size) over 25% of an old field and then seeding these patches with native species. The working hypothesis is that these patches will generate a constant source of propagules which in time will lead to increases in native species diversity within the surrounding grass matrix. The objective of this paper was to determine whether soil amendments should be used to facilitate the establishment and persistence of native species (primarily forbs) within these patches. We seeded the patches with a mixture of native grass and forb species and applied four soil treatments: P fertilization, C additions, C + P, and a control (no amendments). Results for the first 5 years were as follows: (1) seeded forb richness was mostly unaffected by soil amendments; (2) seeded and nonseeded forb biomass and density were substantially reduced by C additions, whereas they were unaffected or increased under P additions; (3) both seeded and non‐native grass biomass substantially increased with C additions; and (4) there was an inverse relationship between native seeded forbs and non‐native grass biomass. Our conclusions are that: (1) P amendments are a potential tool for enhancing native seeded forb biomass in simulated small‐scale disturbance patches; and (2) C additions, although enhancing seeded grass biomass do not reduce the biomass of non‐native grasses. 相似文献
13.
Muhammad Sabir Amanat Ali Muhammad Zia-Ur-rehman Khalid Rehman Hakeem 《International journal of phytoremediation》2015,17(7):613-621
We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P < 0.001) increased dry weights of shoots and roots while compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg?1) and roots (80.92 mg kg?1), respectively while compost-2 caused maximum Ni (14.08 mg kg?1) and (163.87 mg kg?1) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg?1) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg?1) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM. 相似文献
14.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1. 相似文献
15.
《Chemical Speciation and Bioavailability》2013,25(1):37-38
AbstractThe use of organic amendments is a common practice in Pakistan to improve soil fertility. Organic amendments affect the chemical speciation and thus the bioavailability of heavy metals and their uptake and toxicity to plants. The present study evaluates the influence of organic amendments viz. farm yard manure (FM), poultry manure (PM), press mud (PrM) and activated carbon (AC) on nickel (Ni) bioavailability in soil, as well as its uptake into, and growth responses of, Trifolium alexandrinum. Pot experiments were conducted where T. alexandrinum was exposed to three different concentrations of Ni i.e., 30, 60 and 90 mg kg?1 in the form of NiCl2 solution in the presence and absence of organic amendments each applied at 15 g kg?1 soil. The results showed that the effect of organic amendments on Ni bioavailability and uptake by T. alexandrinum depended on the Ni concentration in the soil and the amendment type. Application of organic amendments generally increased Ni phytoavailability in soil and Ni uptake by plants at low Ni levels (Ni-0 and Ni-30) but decreased at higher levels (Ni-60 and Ni-90). 相似文献
16.
表土在彭湖高速公路低缓边坡生态恢复中的应用 总被引:2,自引:0,他引:2
选取江西省彭泽至湖口高速公路沿线5个典型低缓边坡试验点,利用表土生态恢复,采用样线法调查1年后的试验边坡植物的生长情况。结果表明:在彭湖高速公路低缓边坡利用表土资源进行边坡生态恢复是可行的,各种利用表土的试验设计均取得了较好的恢复效果,其中,边坡覆盖7~10cm中层厚度表土后采取人工撒播恢复方式,边坡植物群落的Simpson多样性指数(平均0.80)及Pielou均匀度指数(平均0.84)相对较高,恢复效果较好;同时,此试验条件下生物量的积累值(平均446g.m-2)和木本植被的群落重要值(平均14.5)都显著高于其他恢复方式,这有利于群落结构的稳定和延续。 相似文献
17.
湿地生态系统健康研究进展 总被引:101,自引:7,他引:101
湿地作为一个生态系统 ,具有多种功能和价值 ,是人类最重要的环境资本之一 ,被称为“自然之肾”。湿地在蓄洪防旱、调节气候、控制土壤侵蚀、促淤造陆、降解环境污染等方面起着极其重要的作用。湿地拥有丰富的野生动植物资源 ,是众多野生动植物特别是珍稀水禽的繁殖和越冬地。不仅如此 ,湿地向人类提供大量的生产和生活资料 [1] 。然而 ,近些年来一些地区的湿地状况令人担忧 ,具体表现城市化、工业化、路基建设、农业开发及废物处理等造成湿地面积的缩小 ;水利、灌溉、水库蒸发、河流及地下水过度提取 ,沼泽地排水、挖渠、土地开荒、筑堤造… 相似文献
18.
N. G. Rojas-Avelizapa T. G. Roldán-Carrillo J. M. Arce-Ortega M. E. Ramírez-Islas H. G. Zegarra-Martínez L. C. Fernández-Linares 《Soil & Sediment Contamination》2006,15(4):417-428
The application of biological processes in restoring oil polluted sites is growing due to their efficiency in removing different classes of pollutants. The aim of this study was to determine the ability of microorganisms present in a drilling-waste polluted soil (36,200 mg TPH kg?1 soil) to remove weathered hydrocarbons under stimulated and non-stimulated soil conditions. The hypothesis under study was whether petroleum hydrocarbons removal could be enhanced by manipulating C/N ratio, water content and addition of three agroindustrial wastes. A Box-Behnken design was employed to evaluate the effect of each variable. Results demonstrated that, for orange peels and banana trunk treatments, the variable with the largest effect (p < 0.01) on hydrocarbon removal was the C/N ratio, indicating that higher ratio (100/3) improved removal (79.5–82%). The largest effect (p < 0.001) on hydrocarbon removal for pineapple wastes was observed with higher water content (60%) achieving the highest removal (89%). After 90 days of experimentation, the type of agricultural waste and the agricultural waste/soil ratio were not statistically significant in any treatment. However, their addition was important relative to non-stimulated soil, which showed a hydrocarbon removal of 17%. Data reported in this study showed the application of bioremediation in clay and drilling waste-polluted soils. 相似文献
19.
Comparison of Soil Organic Matter in Created, Restored and Paired Natural Wetlands in North Carolina 总被引:1,自引:0,他引:1
Soil organic matter (SOM) content is a key indicator of soil quality and is correlated to a number of important soil processes
that occur in wetlands such as respiration, denitrification, and phosphorus sorption. To better understand the differences
in the SOM content of created (CW), restored (RW), and paired natural wetlands (NWs), 11 CW/RW-NW pairs were sampled in North
Carolina. The site pairs spanned a range of hydrogeomorphic (HGM) subclasses common in the Coastal Plain. The following null
hypotheses were tested: (1) SOM content of paired CW/RWs and NWs are similar; (2) SOM content of wetlands across different
HGM subclasses is similar; and (3) interactions between wetland status (CW/RW vs. NW) and hydrogeomorphic subclass are similar.
The first null hypothesis was rejected as CW/RWs had significantly lower mean SOM (11.8 ± 3.9%) than their paired NWs (28.98
± 8.0%) on average and at 10 out of the 11 individual sites. The second and third null hypotheses were also rejected as CW/RWs
and NWs in the non-riverine organic soil flat subclass had significantly higher mean SOM content (31.08 ± 14.2%) than the
other three subclasses (8.18 ± 2.5, 11.18 ± 8.2, and 10.38 ± 4.2%). Individual sites within this fourth subclass also had
significantly different SOM content. This indicated that it would be inappropriate to include the organic soil flat subclass
with either the riverine or non-riverine mineral soil flat subclasses when considering restoration guidelines. These results
also suggested that if there is a choice in mitigation options between restoration or creation, wetlands should be restored
rather than created, especially those in the non-riverine organic soil flat subclass. 相似文献
20.
Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA) 总被引:1,自引:0,他引:1
J. Haltiner J. B. Zedler K. E. Boyer G. D. Williams J. C. Callaway 《Wetlands Ecology and Management》1997,4(2):73-91
The performance of two intertidal wetland mitigation projects constructed by the California Department of Transportation (Caltrans) in the Sweetwater Marsh National Wildlife Refuge (SMNWR) in San Diego Bay was evaluated over 5 years. Most of the Sweetwater wetland complex has been altered this century, including diking (with subsequent subsidence), filling, modification of the tidal regime, freshwater inflow and sediment fluxes. The mitigation project goals included a range of functional criteria intended to support two endangered bird species (light-footed clapper rail and California least tern) and one endangered plant (salt marsh bird's-beak). While the mitigation projects have achieved some of the performance criteria established in the regulatory permits (particularly, those related to fish), vegetation criteria for one of the bird species have not been met. The initial grading (in relation to local tidal datums) should support the target plant species, but growth has been less than required. Shortcomings of the habitat include elevated soil and groundwater salinity, low nutrient levels (especially nitrogen, which is readily leached from the coarse substrate), and eroding topography (where a single oversized and overly sinous channel and the lower-than-natural marshpalin result in high velocity surface water flow and erosion). The failure to achieve a large plain at low-marsh elevations highlights the importance of a more complete understanding of the relationship between the site physical processes (topography, hydrology, climate, geomorphology), substrate conditions, and biotic responses.Corresponding editor: R.E. Turner 相似文献