首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsa_circ_0128846 was found to be the most significantly up‐regulated circRNA in our bioinformatics analysis. However, the role of hsa_circ_0128846 in colorectal cancer has not been explored. We thus aim to explore the influence and mechanism of hsa_circ_0128846 in colorectal cancer by sponging its downstream miRNA target miR‐1184. We collected 40 colorectal cancer patients’ tumour tissues to analyse the expression of hsa_circ_0128846, miR‐1184 and AJUBA using qRT‐PCR and Western blot where needed. Then, we constructed stably transfected SW480 and HCT116 cells to study the influence of hsa_circ_0128846, miR‐1184 and AJUBA on colorectal cancer cell phenotypes. To obtain reliable results, a plethora of experiments including RNA immunoprecipitation assay, flow cytometry, EdU incorporation assay, wound healing migration assay, transwell invasion assay and live imaging of nude mice xenograft assay were performed. The binding relationship between hsa_circ_0128846, miR‐1184 and AJUBA mRNA in colorectal cancer was validated by reported gene assay. In colorectal cancer tissues, circ_0128846 and AJUBA were both significantly up‐regulated, while miR‐1184 was significantly down‐regulated compared with healthy tissues. Meanwhile, hsa_circ_0128846 can absorb miR‐1184 to promote the progression of CRC in vivo and SW480 and HCT116 cell phenotypes in vitro. The knockdown of AJUBA, a downstream target of miR‐1184, reversed the effect of miR‐1184 in CRC cells via enhancing the phosphorylation of the Hippo/YAP signalling pathway proteins MST1, LATS1 and YAP. This study revealed that hsa_circ_0128846 contributed to the development of CRC by decreasing the expression of miR‐1184, thereby increasing AJUBA expression and inactivating Hippo/YAP signalling.  相似文献   

2.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

3.
Colorectal cancer (CRC), a kind of human gastrointestinal cancer, has been reported to be one of the most common malignant tumors worldwide. Increasing evidence has indicated that circular RNAs exert significant effects on the development of multiple cancers. Nevertheless, whether hsa_circ_0053277 regulates the progression of CRC remains to be explored. In this study, our results showed that the expression of hsa_circ_0053277 was markedly upregulated in CRC tissues and cells. Knockdown of hsa_circ_0053277 inhibited cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in CRC. miR-2467-3p had a binding site for hsa_circ_0053277. Molecular mechanism assays confirmed that hsa_circ_0053277 could bind with miR-2467-3p. In addition, hsa_circ_0053277 accelerated cell proliferation rate by acting as a sponge for miR-2467-3p in CRC. Matrix metalloproteinase 14 (MMP14) expression was notably upregulated in CRC cells and MMP14 was a downstream target gene of miR-2467-3p. Besides, hsa_circ_0053277 positively regulated MMP14 expression while miR-2467-3p negatively regulated MMP14 expression. Rescue assays verified that MMP14 knockdown countervailed the function of miR-2467-3p inhibitor on cell proliferation, migration, and EMT process in CRC. To sum up, hsa_circ_0053277 facilitated the development of CRC by sponging miR-2467-3p to upregulate MMP14 expression.  相似文献   

4.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   

5.
Matrix metalloproteinases (MMPs), in particular MMP‐9, have been shown to be induced by cytokines, including TNF‐α and contributes to airway inflammation. However, the mechanisms underlying TNF‐α‐induced MMP‐9 expression in human A549 cells remain unclear. Here, we report that TNF‐α‐induced MMP‐9 gene expression was mediated through the TNFR1/TRAF2/PKCα‐dependent signaling pathways in A549 cells, determined by zymographic, RT‐PCR, and Western blotting analyses. TNF‐α‐induced MMP‐9 expression was reduced by pretreatment with a TNFR Ab. Furthermore, TNF‐α‐induced TNFR1 and TRAF2 complex formation was revealed by immunoprecipitation using an anti‐TNFR1 Ab followed by Western blot analysis against an anti‐TRAF2 or anti‐TNFR1 Ab. In addition, TNF‐α‐induced MMP‐9 expression was also reduced by pretreatment with the inhibitor of PKCα (Gö6983), c‐Src (PP1), EGFR (AG1478), or PI3K (LY294002) or transfection with siRNAs of PKCα, Src, EGFR, Akt, p65, p300, and c‐Jun. On the other hand, TNF‐α stimulated the phosphorylation of c‐Src, EGFR, Akt, JNK1/2, and c‐Jun, which were inhibited by pretreatment with Gö6983. We also showed that TNF‐α induced Akt translocation and the formation of an Akt/p65/p300 complex. Pretreatment with the inhibitor of JNK1/2 (SP600125) but not the inhibitor of MEK1/2 (U0126), p38 MAPK (SB202190), or PI3K (LY294002), markedly inhibited TNF‐α‐induced c‐Jun mRNA levels. Taken together, these data suggest that in A549 cells, TNF‐α induces MMP‐9 expression via the TNFR1/TRAF2/PKCα‐dependent JNK1/2/c‐Jun and c‐Src/EGFR/PI3K/Akt pathways. J. Cell. Physiol. 454–464, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

7.
8.
9.
Extravillous trophoblasts (EVTs) invade human decidua via sequential integrin-mediated binding and proteolysis of basement membrane proteins in the extracellular matrix (ECM). In preeclampsia, shallow EVT invasion impairs spiral artery and arteriole remodeling to reduce uteroplacental blood flow. Excess decidual cell-expressed matrix metalloproteinases (MMPs) 2 and 9, in response to preeclampsia-related interleukin 1 beta (IL1B) and tumor necrosis factor alpha (TNF), may inappropriately degrade these basement membrane proteins and impede EVT invasion. This study found significantly higher immunohistochemical MMP9 levels in decidual cells and adjacent interstitial trophoblasts in placental sections of preeclamptic versus gestational age-matched control women. In contrast, immunostaining for MMP2 and tissue inhibitor of matrix metalloproteinases 1 and 2 (TIMP1 and TIMP2) were similar in preeclamptic and control groups. First-trimester decidual cells were incubated with estradiol (E(2)) or E(2) + medroxyprogesterone acetate (MPA), with or without TNF or IL1B. As measured by ELISA, both cytokines elicited concentration-dependent increases in secreted MMP9 levels that were unaffected by MPA. In contrast, secreted levels of MMP2, TIMP1, and TIMP2 were unchanged in all treatment groups. Substrate gel zymography and Western blotting confirmed that each cytokine increased secreted levels of MMP9 but not MMP2. Similarly, quantitative RT-PCR found that TNF and IL1B enhanced MMP9, but not MMP2, mRNA levels. At the implantation site, inflammatory cytokine-enhanced MMP9 may promote preeclampsia by disrupting the decidual ECM to interfere with normal stepwise EVT invasion.  相似文献   

10.

Background

The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells.

Principal Findings

For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells.

Conclusions

Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals.  相似文献   

11.
12.
To investigate acquired resistance to oxaliplatin, we selected two resistant clones from the HCT116 cell line. We found that the resistant phenotype was associated with resistance to oxaliplatin-induced apoptosis as demonstrated by FACS analysis and by Western blotting of caspase 3 activation. In addition, the resistant phenotype showed a concomitant resistance to lonidamine and arsenic trioxide which are inducers of mitochondrial apoptosis. Furthermore, a complete loss of Bax expression due to a frameshift mutation was observed in the most resistant clone. Taken together, these findings suggest that altered mitochondrial-mediated apoptosis could play a role in oxaliplatin resistance.  相似文献   

13.
The study aimed to investigate whether S100A9 gene silencing mediating the IL‐17 pathway affected the release of pro‐inflammatory cytokines in acute pancreatitis (AP). Kunming mice were assigned to the normal, AP, AP + negative control (NC), AP + shRNA, AP + IgG and AP + anti IL‐17 groups. ELISA was applied to measure expressions of AMY, LDH, CRP, TNF‐α, IL‐6 and IL‐8. The cells were distributed into the control, blank, NC, shRNA1 and shRNA2 groups. MTT assay, flow cytometry, RT‐qPCR and Western blotting were used to evaluate cell proliferation, cell cycle and apoptosis, and expressions of S100A9, TLR4, RAGE, IL‐17, HMGB1 and S100A12 in tissues and cells. Compared with the normal group, the AP group displayed increased expressions of AMY, LDH, CRP, TNFα, IL‐6, IL‐8, S100A9, TLR4, RAGE, IL‐17, HMGB1 and S100A12. The AP + shRNA and AP + anti IL‐17 groups exhibited an opposite trend. The in vivo results: Compare with the control group, the blank, NC, shRNA1 and shRNA2 groups demonstrated increased expressions of S100A9, TLR4, RAGE, IL‐17, HMGB1 and S100A12, as well as cell apoptosis and cells at the G1 phase, with reduced proliferation. Compared with the blank and NC groups, the shRNA1 and shRNA2 groups had declined expressions of S100A9, TLR4, RAGE, IL‐17, HMGB1 and S100A12, as well as cell apoptosis and cells at the G1 phase, with elevated proliferation. The results indicated that S100A9 gene silencing suppressed the release of pro‐inflammatory cytokines through blocking of the IL‐17 pathway in AP.  相似文献   

14.

Objectives

In our previous reports, we have demonstrated that extremely low‐frequency electromagnetic fields (ELF‐EMF) exposure enhances the proliferation of keratinocyte. The present study aimed to clarify effects of ELF‐EMF on wound healing and molecular mechanisms involved, using a scratch in vitro model.

Materials and methods

The wounded monolayer cultures of human immortalized keratinocytes (HaCaT), at different ELF‐EMF and Sham exposure times were monitored under an inverted microscope. The production and expression of IL‐1β, TNF‐α, IL‐18 and IL‐18BP were measured by enzyme‐linked immunosorbent assay and quantitative real‐time PCR. The activity and the expression of matrix metalloproteinases (MMP)‐2/9 was evaluated by zymography and Western blot analysis, respectively. Signal transduction proteins expression (Akt and ERK) was measured by Western blot.

Results

The results of wound healing in vitro assay revealed a significant reduction of cell‐free area time‐dependent in ELF‐EMF‐exposed cells compared to Sham condition. Gene expression and release of cytokines analysed were significantly increased in ELF‐EMF‐exposed cells. Our results further showed that ELF‐EMF exposure induced the activity and expressions of MMP‐9. Molecular data showed that effects of ELF‐EMF might be mediated via Akt and ERK signal pathway, as demonstrated using their specific inhibitors.

Conclusions

Our results highlight ability of ELF‐EMF to modulate inflammation mediators and keratinocyte proliferation/migration, playing an important role in wound repair. The ELF‐EMF accelerates wound healing modulating expression of the MMP‐9 via Akt/ERK pathway.
  相似文献   

15.
Incomplete tear film spreading and eyelid closure can cause defective renewal of the ocular surface and air exposure‐induced epithelial keratopathy (EK). In this study, we characterized the role of autophagy in mediating the ocular surface changes leading to EK. Human corneal epithelial cells (HCECs) and C57BL/6 mice were employed as EK models, respectively. Transmission electron microscopy (TEM) evaluated changes in HCECs after air exposure. Each of these models was treated with either an autophagy inhibitor [chloroquine (CQ) or 3‐methyladenine (3‐MA)] or activator [Rapamycin (Rapa)]. Immunohistochemistry assessed autophagy‐related proteins, LC3 and p62 expression levels. Western blotting confirmed the expression levels of the autophagy‐related proteins [Beclin1 and mammalian target of rapamycin (mTOR)], the endoplasmic reticulum (ER) stress‐related proteins (PERK, eIF2α and CHOP) and the PI3K/Akt/mTOR signalling pathway‐related proteins. Real‐time quantitative PCR (qRT‐PCR) determined IL‐1β, IL‐6 and MMP9 gene expression levels. The TUNEL assay detected apoptotic cells. TEM identified autophagic vacuoles in both EK models. Increased LC3 puncta formation and decreased p62 immunofluorescent staining and Western blotting confirmed autophagy induction. CQ treatment increased TUNEL positive staining in HCECs, while Rapa had an opposite effect. Similarly, CQ injection enhanced air exposure‐induced apoptosis and inflammation in the mouse corneal epithelium, which was inhibited by Rapa treatment. Furthermore, the phosphorylation status of PERK and eIF2α and CHOP expression increased in both EK models indicating that ER stress‐induced autophagy promoted cell survival. Taken together, air exposure‐induced autophagy is indispensable for the maintenance of corneal epithelial physiology and cell survival.  相似文献   

16.
Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast‐like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro‐inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL‐1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real‐time PCR, phospho‐MAPkinase array and Western blotting. Treatment‐induced effects on cellular structure and synovial architecture were investigated in three‐dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL‐1β‐induced secretion of IL‐6, IL‐8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo‐proteinases MMP‐2 and MMP‐14. IL‐1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL‐1β‐induced activation of several MAPK whereas it increased phosphorylation of pro‐survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer‐like structure; stimulation with IL‐1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL‐1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA.  相似文献   

17.
Human dental pulp cells (HDPCs) play a crucial role in dental pulp inflammation. Pannexin 3 (Panx3), a member of Panxs (Pannexins), has been recently found to be involved in inflammation. However, the mechanism of Panx3 in human dental pulp inflammation remains unclear. In this study, the role of Panx3 in inflammatory response was firstly explored, and its potential mechanism was proposed. Immunohistochemical staining showed that Panx3 levels were diminished in inflamed human and rat dental pulp tissues. In vitro, Panx3 expression was significantly down‐regulated in HDPCs following a TNF‐α challenge in a concentration‐dependent way, which reached the lowest level at 10 ng/ml of TNF‐α. Such decrease could be reversed by MG132, a proteasome inhibitor. Unlike MG132, BAY 11‐7082, a NF‐κB inhibitor, even reinforced the inhibitory effect of TNF‐α. Quantitative real‐time PCR (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to investigate the role of Panx3 in inflammatory response of HDPCs. TNF‐α‐induced pro‐inflammatory cytokines, interleukin (IL)‐1β and IL‐6, were significantly lessened when Panx3 was overexpressed in HDPCs. Conversely, Panx3 knockdown exacerbated the expression of pro‐inflammatory cytokines. Moreover, Western blot, dual‐luciferase reporter assay, immunofluorescence staining, qRT‐PCR and ELISA results showed that Panx3 participated in dental pulp inflammation in a NF‐κB‐dependent manner. These findings suggested that Panx3 has a defensive role in dental pulp inflammation, serving as a potential target to be exploited for the intervention of human dental pulp inflammation.  相似文献   

18.
Increases of cytokine in the blood play important roles in the pathogenesis of influenza‐associated encephalopathy. TNF‐α was administered intravenously to wild‐type mice, after which blood, CSF and brain tissue were obtained, and changes in BBB permeability, the amounts of MMP‐9 and TIMP‐1, and the localization of activated MMP were assessed. There was a significant increase in BBB permeability after 6 and 12 hr. MMP‐9 was increased after 3 hr in the brain and cerebrospinal fluid, which was earlier than in the serum. TIMP‐1 protein in the brain increased significantly after MMP‐9 had increased. Activation of MMP‐9 was observed in neurons in the cerebral cortex and hippocampus, and in vascular endothelial cells. These findings suggest that an increase in blood TNF‐α promotes activation of MMP‐9 in the brain, and may also induce an increase in permeability of the BBB. Early activation of MMP‐9 in the brain may contribute to an early onset of neurological disorders and brain edema prior to multiple organ failure in those inflammatory diseases associated with highly increased concentrations of TNF‐α in the blood, such as sepsis, burns, trauma and influenza‐associated encephalopathy.  相似文献   

19.
20.
Sodium salicylate (NaSal) is a nonsteroidal anti‐inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet‐derived thromboxane A2, and NF‐κB signaling. Recent studies demonstrated that salicylate could activate AMP‐activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti‐inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate‐mediated inflammation through AMPK are not well‐understood. In the current study, we examined the potential effects of NaSal on inflammation‐like responses of THP‐1 monocytes to lipopolysaccharide (LPS) challenge. THP‐1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl‐2 anti‐apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro‐inflammatory cytokines (TNF‐α, IL‐1β, IL‐6) was determined by enzyme‐linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF‐α and IL‐1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS‐induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal‐mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF‐α and IL‐1β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号