共查询到20条相似文献,搜索用时 19 毫秒
1.
Role of G protein‐coupled receptor kinase 2 in oxidative and nitrosative stress‐related neurohistopathological changes in a mouse model of sepsis‐associated encephalopathy 下载免费PDF全文
Masaaki Kawakami Mizuki Hattori Wakana Ohashi Toshio Fujimori Kohshi Hattori Mariko Takebe Kengo Tomita Hiroki Yokoo Naoyuki Matsuda Mitsuaki Yamazaki Yuichi Hattori 《Journal of neurochemistry》2018,145(6):474-488
2.
Luteolin alleviates post‐infarction cardiac dysfunction by up‐regulating autophagy through Mst1 inhibition 下载免费PDF全文
Mingming Zhang Jie Lin Tingting Wang Yu Duan Congye Li Rongqing Zhang Erhe Gao Haichang Wang Dongdong Sun 《Journal of cellular and molecular medicine》2016,20(1):147-156
Myocardial infarction (MI), which is characterized by chamber dilation and LV dysfunction, is associated with substantially higher mortality. We investigated the effects and underlying mechanisms of Luteolin on post‐infarction cardiac dysfunction. Myocardial infarction was constructed by left anterior descending coronary artery ligation. In vitro, cultured neonatal cardiomyocytes subjected to simulated MI were used to probe mechanism. Luteolin significantly improved cardiac function, decreased cardiac enzyme and inflammatory cytokines release after MI. Enhanced autophagic flux as indicated by more autophagosomes puncta, less accumulation of aggresomes and P62 in the neonatal cardiomyocytes after hypoxia was observed in the Luteolin pre‐treatment group. Western blot analysis also demonstrated that Luteolin up‐regulated autophagy in the cardiomyocytes subjected to simulated MI injury. Furthermore, Luteolin increased mitochondrial membrane potential, adenosine triphosphate content, citrate synthase activity and complexes I/II/III/IV/V activities in the cardiomyocytes subjected to simulated MI injury. Interestingly, mammalian sterile 20‐like kinase 1 (Mst1) knockout abolished the protective effects of Luteolin administration. Luteolin enhances cardiac function, reduces cardiac enzyme and inflammatory markers release after MI. The protective effects of Luteolin are associated with up‐regulation of autophagy and improvement of mitochondrial biogenesis through Mst1 inhibition. 相似文献
3.
4.
Yuen‐Ting Cheung Natalie Qishan Zhang Clara Hiu‐Ling Hung Cora Sau‐Wan Lai Man‐Shan Yu Kwok‐Fai So Raymond Chuen‐Chung Chang 《Journal of cellular and molecular medicine》2011,15(2):244-257
Alzheimer's disease (AD) is an aging‐related progressive neurodegenerative disorder. Previous studies suggested that various soluble Aβ species are neurotoxic and able to activate apoptosis and autophagy, the type I and type II programmed cell death, respectively. However, the sequential and functional relationships between these two cellular events remain elusive. Here we report that low molecular weight Aβ triggered cleavage of caspase 3 and poly (ADP‐ribose) polymerase to cause neuronal apoptosis in rat cortical neurons. On the other hand, Aβ activated autophagy by inducing autophagic vesicle formation and autophagy related gene 12 (ATG12), and up‐regulated the lysoso‐mal machinery for the degradation of autophagosomes. Moreover, we demonstrated that activation of autophagy by Aβ preceded that of apoptosis, with death associated protein kinase phosphorylation as the potential molecular link. More importantly, under Aβ toxicity, neurons exhibiting high level of autophagosome formation were absent of apoptotic features, and inhibition of autophagy by 3‐methylade‐nine advanced neuronal apoptosis, suggesting that autophagy can protect neurons from Aβ‐induced apoptosis. 相似文献
5.
Eri Kawashita Yosuke Kanno Haruka Asayama Kiyotaka Okada Shigeru Ueshima Osamu Matsuo Hiroyuki Matsuno 《Journal of neurochemistry》2013,126(1):58-69
The α2‐Antiplasmin (α2AP) protein is known as a principal physiological inhibitor of plasmin, but we previously demonstrated that it acts as a regulatory factor for cellular functions independent of plasmin. α2AP is highly expressed in the hippocampus, suggesting a potential role for α2AP in hippocampal neuronal functions. However, the role for α2AP was unclear. This study is the first to investigate the involvement of α2AP in the dendritic growth of hippocampal neurons. The expression of microtubule‐associated protein 2, which contributes to neurite initiation and neuronal growth, was lower in the neurons from α2AP?/? mice than in the neurons from α2AP+/+ mice. Exogenous treatment with α2AP enhanced the microtubule‐associated protein 2 expression, dendritic growth and filopodia formation in the neurons. This study also elucidated the mechanism underlying the α2AP‐induced dendritic growth. Aprotinin, another plasmin inhibitor, had little effect on the dendritic growth of neurons, and α2AP induced its expression in the neurons from plaminogen?/? mice. The activation of p38 MAPK was involved in the α2AP‐induced dendritic growth. Therefore, our findings suggest that α2AP induces dendritic growth in hippocampal neurons through p38 MAPK activation, independent of plasmin, providing new insights into the role of α2AP in the CNS. 相似文献
6.
《Developmental neurobiology》2017,77(4):493-510
Doublecortin‐like kinase 1 (DCLK1) is a member of the neuronal microtubule‐associated doublecortin (DCX) family and functions in multiple stages of neural development including radial migration and axon growth of cortical neurons. DCLK1 is suggested to play the roles in part through its protein kinase activity, yet the kinase substrates of DCLK1 remain largely unknown. Here we have identified MAP7D1 (microtubule‐associated protein 7 domain containing 1) as a novel substrate of DCLK1 by using proteomic analysis. MAP7D1 is expressed in developing cortical neurons, and knockdown of MAP7D1 in layer 2/3 cortical neurons results in a significant impairment of callosal axon elongation, but not of radial migration, in corticogenesis. We have further defined the serine 315 (Ser 315) of MAP7D1 as a DCLK1‐induced phosphorylation site and shown that overexpression of a phosphomimetic MAP7D1 mutant in which Ser 315 is substituted with glutamic acid (MAP7D1 S315E), but not wild‐type MAP7D1, fully rescues the axon elongation defects in Dclk1 knockdown neurons. These data demonstrate that DCLK1 phosphorylates MAP7D1 on Ser 315 to facilitate axon elongation of cortical neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017 相似文献
7.
8.
9.
In addition to mitochondria, BCL‐2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL‐2‐interacting protein at the ER, nutrient‐deprivation autophagy factor‐1 (NAF‐1)—a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF‐1 contains a two iron–two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL‐2. NAF‐1 is displaced from BCL‐2 by the ER‐restricted BH3‐only protein BIK and contributes to regulation of BIK‐initiated autophagy, but not BIK‐dependent activation of caspases. Similar to BCL‐2, NAF‐1 is found in association with the inositol 1,4,5‐triphosphate receptor and is required for BCL‐2‐mediated depression of ER Ca2+ stores. During nutrient deprivation as a physiological stimulus of autophagy, BCL‐2 is known to function through inhibition of the autophagy effector and tumour suppressor Beclin 1. NAF‐1 is required in this pathway for BCL‐2 at the ER to functionally antagonize Beclin 1‐dependent autophagy. Thus, NAF‐1 is a BCL‐2‐associated co‐factor that targets BCL‐2 for antagonism of the autophagy pathway at the ER. 相似文献
10.
β‐Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP‐activated protein kinase‐dependent increase in autophagy 下载免费PDF全文
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway. 相似文献
11.
Shigeo Fukuda Yoshifumi Iwamaru Morikazu Imamura Kentarou Masujin Yoshihisa Shimizu Yuichi Matsuura Yujing Shu Megumi Kurachi Kazuo Kasai Yuichi Murayama Sadao Onoe Ken’ichi Hagiwara Tetsutaro Sata Shirou Mohri Takashi Yokoyama Hiroyuki Okada 《Microbiology and immunology》2009,53(12):704-707
It has been assumed that the agent causing BSE in cattle is a uniform strain (classical BSE); however, different neuropathological and molecular phenotypes of BSE (atypical BSE) have been recently reported. We demonstrated the successful transmission of L‐type‐like atypical BSE detected in Japan (BSE/JP24 isolate) to cattle. Based on the incubation period, neuropathological hallmarks, and molecular properties of the abnormal host prion protein, the characteristics of BSE/JP24 prion were apparently distinguishable from the classical BSE prion and closely resemble those of bovine amyloidotic spongiform encephalopathy prion detected in Italy. 相似文献
12.
Jae Seong Lee Tae Kwang Ha Jin Hyoung Park Gyun Min Lee 《Biotechnology and bioengineering》2013,110(8):2195-2207
Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti‐apoptosis engineering. Recently, autophagy has received attention as a new anti‐cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti‐apoptosis and pro‐autophagy in CHO cells (DG44) was attempted by co‐overexpressing an anti‐apoptotic protein, Bcl‐2, and a key regulator of autophagy pathway, Beclin‐1, respectively. Co‐overexpression of Bcl‐2 and Beclin‐1 exhibited a longer culture period as well as higher viability during serum‐free suspension culture, compared with the control (without co‐overexpression of Bcl‐2 and Beclin‐1) and Bcl‐2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl‐2 overexpression, Beclin‐1 overexpression successfully induced the increase in the autophagic marker protein, LC3‐II, and autophagosome formation with the decrease in mTOR activity. Co‐immunoprecipitation and qRT‐PCR experiments revealed that the enforced expression of Beclin‐1 increased Ulk1 expression and level of free‐Beclin‐1 that did not bind to the Bcl‐2 despite the Bcl‐2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co‐overexpression of Bcl‐2 and Beclin‐1 also protected the cells from cell death more efficiently than Bcl‐2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro‐autophagy engineering together with anti‐apoptosis engineering yields a synergistic effect and successfully enhances the anti‐cell death engineering of CHO cells. Biotechnol. Bioeng. 2013; 110: 2195–2207. © 2013 Wiley Periodicals, Inc. 相似文献
13.
14.
15.
16.
ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB–PTPIP51 interaction and ER–mitochondria associations 下载免费PDF全文
Patricia Gomez‐Suaga Jacqueline C Mitchell Dawn HW Lau Emma H Gray Rosa M Sancho Gema Vizcay‐Barrena Kurt J De Vos Christopher E Shaw Diane P Hanger Wendy Noble Christopher CJ Miller 《EMBO reports》2016,17(9):1326-1342
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB–PTPIP51 interaction and ER–mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological read‐out of ER–mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS‐expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUS‐induced reductions to ER–mitochondria associations and are linked to activation of glycogen synthase kinase‐3β (GSK‐3β), a kinase already strongly associated with ALS/FTD. 相似文献
17.
Einat Zalckvar Hanna Berissi Liat Mizrachy Yulia Idelchuk Itay Koren Miriam Eisenstein Helena Sabanay Ronit Pinkas‐Kramarski Adi Kimchi 《EMBO reports》2009,10(3):285-292
Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3‐domain‐only protein that binds to Bcl‐2 anti‐apoptotic family members. The dissociation of beclin 1 from its Bcl‐2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled. Here, we show that death‐associated protein kinase (DAPK) regulates this process. The activated form of DAPK triggers autophagy in a beclin‐1‐dependent manner. DAPK phosphorylates beclin 1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes the dissociation of beclin 1 from Bcl‐XL and the induction of autophagy. These results reveal a substrate for DAPK that acts as one of the core proteins of the autophagic machinery, and they provide a new phosphorylation‐based mechanism that reduces the interaction of beclin 1 with its inhibitors to activate the autophagic machinery. 相似文献
18.
The GmFWL1 (FW2‐2‐like) nodulation gene encodes a plasma membrane microdomain‐associated protein 下载免费PDF全文
Zhenzhen Qiao Laurent Brechenmacher Benjamin Smith Gregory W. Strout William Mangin Christopher Taylor Scott D. Russell Gary Stacey Marc Libault 《Plant, cell & environment》2017,40(8):1442-1455
The soybean gene GmFWL1 (FW2‐2‐like1) belongs to a plant‐specific family that includes the tomato FW2‐2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2‐2‐like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain‐associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process. 相似文献
19.
20.
Wei Liu Jing Zhuang Yuanyuan Jiang Jing Sun Richard A. Prinz Jun Sun Xinan Jiao Xiulong Xu 《Cellular microbiology》2019,21(12)
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria. 相似文献