首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   

2.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

3.
Azure (or reverse amber) mutants grow normally on wild-type Escherichia coli but not on host strains harbouring a strong UAG suppressor mutation. Three different bacteriophage MS2 azure mutants obtained by treatment with nitrous acid have been characterized at the nucleotide sequence level. The 3′-end fragment of the 32P-labelled mutant genomes was isolated by DNA:RNA hybridization and treatment with nuclease S1, and was analyzed by mini-fingerprinting of the RNA. It is known that the wild-type MS2 polymerase gene ends with a UAG codon, followed seven triplets further by an in-phase UAA triplet. All three azure mutants contained an A → G transition in this UAA second stop codon of the polymerase gene, resulting in a second suppressible UAG (amber) codon. Analysis of revertants demonstrated that the azure mutation can be counteracted either by a true site reversion at the second stop or by the creation of a new stop signal for the polymerase gene, either UAA (ochre) or UGA (opal), before or at the first stop, or beyond the second stop. On the basis of these results, a mechanism for the azure mutation is proposed. Silent mutations (one in the coding region, three in the untranslated 3′-terminal sequence) have also been observed in these phage stocks.  相似文献   

4.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

5.
The nearest 5' context of 2559 human stop codons was analysed in comparison with the same context of stop-like codons (UGG, UGC, UGU, CGA for UGA; CAA, UAU, UAC for UAA; and UGG, UAU, UAC, CAG for UAG). The non-random distribution of some nucleotides upstream of the stop codons was observed. For instance, uridine is over-represented in position -3 upstream of UAG. Several codons were shown to be over-represented immediately upstream of the stop codons: UUU(Phe), AGC(Ser), and the Lys and Ala codon families before UGA; AAG(Lys), GCG(Ala), and the Ser and Leu codon families before UAA; and UCA(Ser), AUG(Met), and the Phe codon family before UAG. In contrast, the Thr and Gly codon families were under-represented before UGA, while ACC(Thr) and the Gly codon family were under-represented before UAG and UAA respectively. In an earlier study, uridine was shown to be over-represented in position -3 before UGA in Escherichia coli [Arkov,A.L., Korolev,S.V. and Kisselev,L.L. (1993) Nucleic Acids Res., 21,2891-2897]. In that study, the codons for Lys, Phe and Ser were shown to be over-represented immediately upstream of E. coli stop codons. Consequently, E. coli and human termination codons have similar 5' contexts. The present study suggests that the 5' context of stop codons may modulate the efficiency of peptide chain termination and (or) stop codon readthrough in higher eukaryotes, and that the mechanisms of such a modulation in prokaryotes and higher eukaryotes may be very similar.  相似文献   

6.
Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code.  相似文献   

7.
In eukaryotes with the universal genetic code a single class I release factor (eRF1) most probably recognizes all stop codons (UAA, UAG and UGA) and is essential for termination of nascent peptide synthesis. It is well established that stop codons have been reassigned to amino acid codons at least three times among ciliates. The codon specificities of ciliate eRF1s must have been modified to accommodate the variant codes. In this study we have amplified, cloned and sequenced eRF1 genes of two hypotrichous ciliates, Oxytricha trifallax (UAA and UAG for Gln) and Euplotes aediculatus (UGA for Cys). We also sequenced/identified three protist and two archaeal class I RF genes to enlarge the database of eRF1/aRF1s with the universal code. Extensive comparisons between universal code eRF1s and those of Oxytricha, Euplotes, and Tetrahymena which represent three lineages that acquired variant codes independently, provide important clues to identify stop codon-binding regions in eRF1. Domain 1 in the five ciliate eRF1s, particularly the TASNIKS heptapeptide and its adjacent region, differs significantly from domain 1 in universal code eRF1s. This observation suggests that domain 1 contains the codon recognition site, but that the mechanism of eRF1 codon recognition may be more complex than proposed by Nakamura et al. or Knight and Landweber.  相似文献   

8.
Class 1 eukaryotic release factor 1 (eRF1) recognizes all three stop codons (UAA, UAG, and UGA) in standard-code organisms. In some ciliates with variant genetic codes, one or two stop codons are used to encode amino acids and are not recognized by eRF1; e.g., UAA and UAG are reassigned to Gln in Stylonychia and UGA is reassigned to Cys in Euplotes. Stop codon recognition is due to the N-terminal domain of eRF1 in standard-code organisms. Since variant-code ciliates most likely originate from universal-code ancestors, the N-domain sequence of their eRF1 was assumed to harbor the residues that are responsible for the changes in stop codon recognition specificity. To identify the N-domain regions determining the UGA-only specificity of Euplotes aediculatus eRF1, chimeric proteins were constructed by swapping various N-domain fragments of the E. aediculatus for their human counterparts; the MC domain was from human eRF1. Functional analysis of the chimeric eRF1 in vivo revealed two regions (residues 38–50 and 123–145) restricting the E. aediculatus eRF1 specificity to UAR. The change in stop codon recognition specificity of eRF1 was regarded as the first step in the origin of the variant genetic code in ciliates.  相似文献   

9.
10.
Paramecium tetraurelia, like some other ciliate species, uses an alternative nuclear genetic code where UAA and UAG are translated as glutamine and UGA is the only stop codon. It has been postulated that the use of stop codons as sense codons is dependent on the presence of specific tRNAs and on modification of eukaryotic release factor one (eRF1), a factor involved in stop codon recognition during translation termination. We describe here the isolation and characterisation of two genes, eRF1-a and eRF1 b, coding for eRF1 in P. tetraurelia. The two genes are very similar, both in genomic organization and in sequence, and might result from a recent duplication event. The two coding sequences are 1,314 nucleotides long, and encode two putative proteins of 437 amino acids with 98.5% identity. Interestingly, when compared with the eRF1 sequences either of ciliates having the same variant genetic code, or of other eukaryotes, the eRF1 of P. tetraurelia exhibits significant differences in the N-terminal region, which is thought to interact with stop codons. We discuss here the consequences of these changes in the light of recent models proposed to explain the mechanism of stop codon recognition in eukaryotes. Besides, analysis of the expression of the two genes by Northern blotting and primer extension reveals that these genes exhibit a differential expression during vegetative growth and autogamy.  相似文献   

11.
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.  相似文献   

12.
In several species of ciliates, the universal stop codons UAA and UAG are translated into glutamine, while in the euplotids, the glutamine codon usage is normal, but UGA appears to be translated as cysteine. Because the emerging position of this monophyletic group in the eukaryotic lineage is relatively late, this deviant genetic code represents a derived state of the universal code. The question is therefore raised as to how these changes arose within the evolutionary pathways of the phylum. Here, we have investigated the presence of stop codons in alpha tubulin and/or phosphoglycerate kinase gene coding sequences from diverse species of ciliates scattered over the phylogenetic tree constructed from 28S rRNA sequences. In our data set, when deviations occur they correspond to in frame UAA and UAG coding for glutamine. By combining these new data with those previously reported, we show that (i) utilization of UAA and UAG codons occurs to different extents between, but also within, the different classes of ciliates and (ii) the resulting phylogenetic pattern of deviations from the universal code cannot be accounted for by a scenario involving a single transition to the unusual code. Thus, contrary to expectations, deviations from the universal genetic code have arisen independently several times within the phylum.  相似文献   

13.
In universal-code eukaryotes, a single class-1 translation termination factor eRF1 decodes all three stop codons, UAA, UAG, and UGA. In some ciliates with variant genetic codes one or two stop codons are used to encode amino acid(s) and are not recognized by eRF1. In Stylonychia, UAG and UAA codons are reassigned as glutamine codons, and in Euplotes, UGA is reassigned as cysteine codon. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of eRF1. Because variant-code ciliates most likely evolved from universal code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. To find out amino acid residues which confer UAR-only specificity to Euplotes aediculatus eRF1, eRFI chimeras were constructed by swapping eRF1 E. aediculatus N-terminal domain sequences with the matching ones from the human protein. In these chimeras the MC-domain was from human eRF1. Functional analysis of these chimeric eRFI highlighted the crucial role of the two regions (positions 38-50 and 123-145) in the N-terminal domain of E. aediculatus eRF1 that restrict E. aediculatus eRF1 specificity toward UAR codons. Possibly, restriction of eRF1 specificity to UAR codons might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UGA to sense codons.  相似文献   

14.
In eukaryotes, the polypeptide release factor 1 (eRF1) is involved in translation termination at all three stop codons. However, the mechanism for decoding stop codons remains unknown. A direct interaction of eRF1 with the stop codons has been postulated. Recent studies focus on eRF1 from ciliates in which some stop codons are reassigned to sense codons. Using an in vitro assay based on mammalian ribosomes, we show that eRF1 from the ciliate Euplotes aediculatus responds to UAA and UAG as stop codons and lacks the capacity to decipher the UGA codon, which encodes cysteine in this organism. This result strongly suggests that in ciliates with variant genetic codes eRF1 does not recognize the reassigned codons. Recent hypotheses describing stop codon discrimination by eRF1 are not fully consistent with the set of eRF1 sequences available so far and require direct experimental testing.  相似文献   

15.
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.  相似文献   

16.
Translation termination in eukaryotes typically requires the decoding of one of three stop codons UAA, UAG or UGA by the eukaryotic release factor eRF1. The molecular mechanisms that allow eRF1 to decode either A or G in the second nucleotide, but to exclude UGG as a stop codon, are currently not well understood. Several models of stop codon recognition have been developed on the basis of evidence from mutagenesis studies, as well as studies on the evolutionary sequence conservation of eRF1. We show here that point mutants of Saccharomyces cerevisiae eRF1 display significant variability in their stop codon read-through phenotypes depending on the background genotype of the strain used, and that evolutionary conservation of amino acids in eRF1 is only a poor indicator of the functional importance of individual residues in translation termination. We further show that many phenotypes associated with eRF1 mutants are quantitatively unlinked with translation termination defects, suggesting that the evolutionary history of eRF1 was shaped by a complex set of molecular functions in addition to translation termination. We reassess current models of stop-codon recognition by eRF1 in the light of these new data.  相似文献   

17.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

18.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

19.
The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post-labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α-globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.  相似文献   

20.
One of three mRNA codons — UAA, UAG and UGA — is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacteriumEscherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号