首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The non-native tunicates Didemnum vexillum, Ciona savignyi, and Styela clava are of concern to resource managers of Puget Sound, Washington, USA because they have been shown to threaten native species diversity and shellfish aquaculture in other regions. Invasive tunicates in Puget Sound occur mainly on man-made structures such as floating docks and aquaculture facilities. We conducted studies of the three species of concern and a fourth introduced tunicate, Botrylloides violaceus, that occur on these structures to evaluate their effects on mussels and native invertebrate communities. Because most studies of community effects of tunicates have dealt with sessile fouling organisms, we focused instead on epibenthic organisms such as meiofaunal harpacticoid copepods and macrofaunal polychaetes and amphipods that are known to be important prey for juvenile salmon and other small fish. Similar studies have shown mixed results, with negative, positive, or no effects depending on the species. We also found few community-level effects. Abundances of several species were lower when tunicates were present, but only at some of the sites. Several other species, including a non-native isopod, were significantly more abundant in the presence of tunicates. However, in most cases results were not statistically significant and more intensive, controlled sampling or experiments may be needed to demonstrate any consistent tunicate effects. Although invasive tunicates cause problems for mussel growers elsewhere, we did not find negative effects on mussels at four sites in Puget Sound. Given the large impacts known to accompany tunicate invasions elsewhere and their relatively recent invasions into Puget Sound, monitoring of their populations and effects should continue in the region.  相似文献   

2.
3.
4.
In comparative immunology and evolution of the chordate immune system, tunicates hold an important phylogenetic position as sister group of vertebrates. However, knowledge of the tunicate immune system is limited to the class Ascidiacea, in which some species are now considered model organisms. In the class Thaliacea, represented by fragile pelagic species, the few studies on their haemocytes go back to several decades ago and do not consider comparative aspects with ascidian haemocytes. In this study, we identified various haemocyte types and their distribution in the common salp Thalia democratica by comparative observations under light and electron microscopy and by histochemical, histoenzymatic and immunohistochemical techniques. By comparing specialisations with those of ascidian haemocytes, we detected an undifferentiated cell type (lymphocyte‐like cell) and three categories with four cell types, that is, (i) phagocytic line (hyaline amoebocyte and amoebocyte with large vacuoles), (ii) mast cell‐like line (granular cell) and (iii) storage cells (nephrocyte). Both phagocytes and granular cells appear to migrate in the tunic. Phagocytes adhere to the tunic which internally covers the oral siphon, where they probably function as sentinel cells of the pharynx. Results show the variety of haemolymph cells in the salp similar to phlebobranch ascidians.  相似文献   

5.
浮游被囊动物的分类及其生态学研究进展   总被引:2,自引:0,他引:2  
被囊动物(Tunicata)是一类低等脊索动物,包括3个纲:有尾纲、海樽纲和海鞘纲;全部生活在海洋里,其中有尾纲和海樽纲营浮游生活。综述了国内外浮游被囊动物分类和生态研究的现状和进展,综述介绍了有尾纲和海樽纲的分类依据、研究现状、趋势和在海洋生态系统中的作用。浮游被囊动物是热带和亚热带海域重要的浮游动物类群,种类和数量的分布变化受物理和生物环境因素的影响;它一方面大量摄食浮游细菌和微小浮游植物,另一方面被一些经济动物摄食,因此在海洋食物链的传递和生态系统的物质循环中占有重要位置。  相似文献   

6.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   

7.
The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the underside of the sea ice, and phytoplankton growing in open waters. Long chain omega‐3 fatty acids, a subgroup of polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their relative PUFA content. The first PUFA‐peak occurred in late April during solid ice cover at the onset of the ice algal bloom, and the second PUFA‐peak occurred in early July just after the ice break‐up at the onset of the phytoplankton bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two bloom events. Females of C. glacialis utilized the high‐quality ice algal bloom to fuel early maturation and reproduction, whereas the resulting offspring had access to ample high‐quality food during the phytoplankton bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production regime due to earlier ice break‐up and onset of the phytoplankton bloom. A potential mismatch between the two primary production peaks of high‐quality food and the reproductive cycle of key Arctic grazers may have negative consequences for the entire lipid‐driven Arctic marine ecosystem.  相似文献   

8.
Seasonal pulses of phytoplankton drive seasonal cycles of carbon fixation and particle sedimentation, and might condition recruitment success in many exploited species. Taking advantage of long‐term series of remotely sensed chlorophyll a (1998–2012), we analyzed changes in phytoplankton seasonality in the North Atlantic Ocean. Phytoplankton phenology was analyzed based on a probabilistic characterization of bloom incidence. This approach allowed us to detect changes in the prevalence of different seasonal cycles and, at the same time, to estimate bloom timing and magnitude taking into account uncertainty in bloom detection. Deviations between different sensors stressed the importance of a prolonged overlap between successive missions to ensure a correct assessment of phenological changes, as well as the advantage of semi‐analytical chlorophyll algorithms over empirical ones to reduce biases. Earlier and more intense blooms were detected in the subpolar Atlantic, while advanced blooms of less magnitude were common in the Subtropical gyre. In the temperate North Atlantic, spring blooms advanced their timing and decreased in magnitude, whereas fall blooms delayed and increased their intensity. At the same time, the prevalence of locations with a single autumn/winter bloom or with a bimodal seasonal cycle increased, in consonance with a poleward expansion of subtropical conditions. Changes in bloom timing and magnitude presented a clear signature of environmental factors, especially wind forcing, although changes on incident photosynthetically active radiation and sea surface temperature were also important depending on latitude. Trends in bloom magnitude matched changes in mean chlorophyll a during the study period, suggesting that seasonal peaks drive long‐term trends in chlorophyll a concentration. Our results link changes in North Atlantic climate with recent trends in the phenology of phytoplankton, suggesting an intensification of these impacts in the near future.  相似文献   

9.
Cytochrome P450 family 1 (CYP1) proteins are important in a large number of toxicological processes. CYP1A and CYP1B genes are well known in mammals, but the evolutionary history of the CYP1 family as a whole is obscure; that history may provide insight into endogenous functions of CYP1 enzymes. Here, we identify CYP1-like genes in early deuterostomes (tunicates and echinoderms), and several new CYP1 genes in vertebrates (chicken, Gallus gallus and frog, Xenopus tropicalis). Profile hidden Markov models (HMMs) generated from vertebrate CYP1A and CYP1B protein sequences were used to identify 5 potential CYP1 homologs in the tunicate Ciona intestinalis genome. The C. intestinalis genes were cloned and sequenced, confirming the predicted sequences. Orthologs of 4 of these genes were found in the Ciona savignyi genome. Bayesian phylogenetic analyses group the tunicate genes in the CYP1 family, provisionally in 2 new subfamilies, CYP1E and CYP1F, which fall in the CYP1A and CYP1B/1C clades. Bayesian and maximum likelihood analyses predict functional divergence between the tunicate and vertebrate CYP1s, and regions within CYP substrate recognition sites were found to differ significantly in position-specific substitution rates between tunicates and vertebrates. Subsequently, 10 CYP1-like genes were found in the echinoderm Strongylocentrotus purpuratus (sea urchin) genome. Several of the tunicate and echinoderm CYP1-like genes are expressed during development. Canonical xenobiotic response elements are present in the upstream genomic sequences of most tunicate and sea urchin CYP1s, and both groups are predicted to possess an aryl hydrocarbon receptor (AHR), suggesting possible regulatory linkage of AHR and these CYPs. The CYP1 family has undergone multiple rounds of gene duplication followed by functional divergence, with at least one gene lost in mammals. This study provides new insight into the origin and evolution of CYP1 genes.  相似文献   

10.
11.
Stanniocalcin (STC) is present throughout vertebrates, including humans, but a structure for STC has not been identified in animals that evolved before bony fish. The origin of this pleiotropic hormone known to regulate calcium is not clear. In the present study, we have cloned three stanniocalcins from two invertebrates, the tunicate Ciona intestinalis and the amphioxus Branchiostoma floridae. Both species are protochordates with the tunicates as the closest living relatives to vertebrates. Amphioxus are basal to both tunicates and vertebrates. The genes and predicted proteins of tunicate and amphioxus share several key structural features found in all previously described homologs. Both the invertebrate and vertebrate genes have four conserved exons. The predicted length of the single pro-STC in Ciona is 237 amino acids and the two pro-hormones in amphioxus are 207 and 210 residues, which is shorter than human pro-STCs at 247 and 302 residues due to expansion of the C-terminal region in vertebrate forms. The conserved pattern of 10 cysteines in all chordate STCs is crucial for identification as amphioxus and tunicate amino acids are only 14-23% identical with human STC1 and STC2. The 11th cysteine, which is the cysteine shown to form a homodimer in vertebrates, is present only in amphioxus STCa, but not in amphioxus STCb or tunicate STC, suggesting the latter two are monomers. The expression of stanniocalcin in Ciona is widespread as shown by RT-PCR and by quantitative PCR. The latter method shows that the highest amount of STC mRNA is in the heart with lower amounts in the neural complex, branchial basket, and endostyle. A widespread distribution is present also in mammals and fish for both STC1 and STC2. Stanniocalcin is a presumptive regulator of calcium in both Ciona and amphioxus, although the structure of a STC receptor remains to be identified in any organism. Our data suggest that amphioxus STCa is most similar to the common ancestor of vertebrate STCs because it has an 11th cysteine necessary for dimerization, an N-glycosylation motif, although not the canonical one in vertebrate STCs, and similar gene organization. Tunicate and amphioxus STCs are more similar in structure to vertebrate STC1 than to vertebrate STC2. The unique features of STC2, including 14 instead of 11 cysteines and a cluster of histidines in the C-terminal region, appear to be found exclusively in vertebrates.  相似文献   

12.
To improve our mechanistic understanding and predictive capacities with respect to climate change effects on the spring phytoplankton bloom in temperate marine systems, we used a process‐driven dynamical model to disentangle the impact of potentially relevant factors which are often correlated in the field. The model was based on comprehensive indoor mesocosm experiments run at four temperature and three light regimes. It was driven by time‐series of water temperature and irradiance, considered edible and less edible phytoplankton separately, and accounted for density‐dependent grazing losses. It successfully reproduced the observed dynamics of well edible phytoplankton in the different temperature and light treatments. Four major factors influenced spring phytoplankton dynamics: temperature, light (cloudiness), grazing, and the success of overwintering phyto‐ and zooplankton providing the starting biomasses for spring growth. Our study predicts that increasing cloudiness as anticipated for warmer winters for the Baltic Sea region will retard phytoplankton net growth and reduce peak heights. Light had a strong direct effect in contrast to temperature. However, edible phytoplankton was indirectly strongly temperature‐sensitive via grazing which was already important in early spring at moderately high algal biomasses and counter‐intuitively provoked lower and later algal peaks at higher temperatures. Initial phyto‐ and zooplankton composition and biomass also had a strong effect on spring algal dynamics indicating a memory effect via the broadly under‐sampled overwintering plankton community. Unexpectedly, increased initial phytoplankton biomass did not necessarily lead to earlier or higher spring blooms since the effect was counteracted by subsequently enhanced grazing. Increasing temperature will likely exhibit complex indirect effects via changes in overwintering phytoplankton and grazer biomasses and current grazing pressure. Additionally, effects on the phytoplankton composition due to the species‐specific susceptibility to grazing are expected. Hence, we need to consider not only direct but also indirect effects, e.g. biotic interactions, when addressing climate change impacts.  相似文献   

13.
A combination of stomach contents, nitrogen stable‐isotope and tissue C:N values are presented to demonstrate feeding activity of Atlantic bluefin tuna Thunnus thynnus on the Gulf of Mexico (GOMEX) spawning grounds. Diets include teleosts, cephalopods, crustaceans and a pelagic tunicate (Pyrosoma atlanticum). Results reveal the need to classify the GOMEX as a T. thynnus feeding ground.  相似文献   

14.
Effects of metal-based environmental pollutants on tunicate hemocytes   总被引:3,自引:0,他引:3  
Tunicates are filter feeding marine invertebrates that are susceptible to environmental contamination by toxic metals and polyaromatic hydrocarbons. Recently, we have shown that tunicate immune reactions are profoundly affected by exposure to tributyltin (TBT) and copper, both of which are components of marine antifouling paints. This study tests the effects of those pollutants on the hemocytes of tunicates. Immunofluorescence labeling with an anti-hemocyte monoclonal antibody demonstrated that the antigenic structure of the circulating hemocyte population was substantially affected by TBT and copper. Antigen-positive hemocytes were also found to accumulate in the pharyngeal papillae of TBT-exposed tunicates. Histological analyses indicated that this cellular accumulation in pharyngeal papillae involved refractile vacuolated hemocytes. Refractile vacuolated cells from TBT-exposed tunicates also occurred at greater frequencies in the circulating hemolymph, and had altered morphologies, compared to cells from nontreated controls. These data confirm that exogenous metals can have profound effects on the hemocytes of tunicates.  相似文献   

15.
16.
When attacked by herbivores, land plants can produce a variety of volatile compounds that attract carnivorous mutualists. Plants and carnivores can benefit from this symbiotic relationship, because the induced defensive interaction increases foraging success of the carnivores, while reducing the grazing pressure exerted by the herbivores on the plants. Here, we examine whether aquatic phytoplankton use volatile chemical cues in analogous tritrophic interactions. Marine algae produce several classes of biogenic gases such as non‐methane hydrocarbons, organohalogens, ammonia and methylamines, and dimethylsulfide. The grazing‐induced release of marine biogenic volatiles is poorly understood, however, and its effect on the chemical ecology of plankton and the foraging behavior of predators is essentially unknown. We outline grazing‐induced defenses in algae and highlight the biogenic production of volatiles when phytoplankton are attacked by herbivores. The role of chemical signaling in marine ecology presents several possible avenues for future research, and we believe that progress in this area will result in better understanding of species competition, bloom development, and the structuring of food webs in the sea. This has further implications for biogeochemical cycles, because several key compounds are emitted that influence the chemistry of the atmosphere and global climate.  相似文献   

17.
Previous studies have identified proteins from tunicates (invertebrate members of the Phylum Chordata) that have physicochemical and functional properties similar to those of the inflammatory cytokine, interleukin 1 (IL-1). Here we characterize one of those proteins from the tunicate, Styela plicata, that can stimulate tunicate and mammalian cell proliferation, activate phagocytosis, increase interleukin 2 (IL-2) secretion by mammalian peripheral blood mononuclear cells and enhance IL-2 receptor (IL-2R) expression by mammalian EL-4.IL-2 cells. Partial amino acid sequence data showed that the S. plicata protein resembles three C-type lectins (TC14, TC14-1 and TC14-2) from a closely related tunicate species, Polyandrocarpa misakiensis. Its similarity to carbohydrate recognition domains (CRDs) from P. misakiensis lectins suggests that the S. plicata protein modulates the activities of mammalian immunocompetent cells by interacting with carbohydrate moieties of glycosylated cell surface receptors.  相似文献   

18.
This paper analyzes data on the state of the pelagic microalgae community of the Kara Sea for all hydrological seasons. The data were obtained during complex in situ observations in 1996–2006. Four phases in the annual succession cycle of the phytoplankton of the nearshore continental area of the Kara Sea were identified: a prevernal phase (cryoflora bloom), vernal phase (ice-edge bloom), summer-fall phase (mixed synthesis phase), and winter phase (dormant phase). These periods are clearly distinguished from each other in their composition of dominating species complexes and quantitative characteristics, i.e., the numbers and biomasses of microalgae. In the investigated region, which is completely covered by ice during most of the year, the primary production processes begin at the same time as in ice-free coastal areas. Growth and blooming of cryoflora occur under the ice cover long before it breaks down. The peak development of the pelagic microalgae community, which is comparable to the spring peak of microalgae in ice-free coastal areas, is observed in the summer, when freshwater runoff from large rivers increases sharply.  相似文献   

19.
In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology.  相似文献   

20.
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号