首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioma is the most malignant and aggressive type of brain tumour with high heterogeneity and mortality. Although some clinicopathological factors have been identified as prognostic biomarkers, the individual variants and risk stratification in patients with lower grade glioma (LGG) have not been fully elucidated. The primary aim of this study was to identify an efficient DNA methylation combination biomarker for risk stratification and prognosis in LGG. We conducted a retrospective cohort study by analysing whole genome DNA methylation data of 646 patients with LGG from the TCGA and GEO database. Cox proportional hazard analysis was carried out to screen and construct biomarker model that predicted overall survival (OS). The Kaplan‐Meier survival curves and time‐dependent ROC were constructed to prove the efficiency of the signature. Then, another independent cohort was used to further validate the finding. A two‐CpG site DNA methylation signature was identified by multivariate Cox proportional hazard analysis. Further analysis indicated that the signature was an independent survival predictor from other clinical factors and exhibited higher predictive accuracy compared with known biomarkers. This signature was significantly correlated with immune‐checkpoint blockade, immunotherapy‐related signatures and ferroptosis regulator genes. The expression pattern and functional analysis showed that these two genes corresponding with two methylation sites contained in the model were correlated with immune infiltration level, and involved in MAPK and Rap1 signalling pathway. The signature may contribute to improve the risk stratification of patients and provide a more accurate assessment for precision medicine in the clinic.  相似文献   

2.
Alternative splicing (AS) is assumed to play important roles in the progression and prognosis of cancer. Currently, the comprehensive analysis and clinical relevance of AS in lower‐grade diffuse gliomas have not been systematically addressed. Here, we gathered alternative splicing data of lower‐grade diffuse gliomas from SpliceSeq. Based on the Percent Spliced In (PSI) values of 515 lower‐grade diffuse glioma patients from the Cancer Genome Atlas (TCGA), we performed subtype‐differential AS analysis and consensus clustering to determine robust clusters of patients. A total of 48 050 AS events in 10 787 genes in lower‐grade diffuse gliomas were profiled. Subtype‐differential splicing analysis and functional annotation revealed that spliced genes were significantly enriched in numerous cancer‐related biological phenotypes and signalling pathways. Consensus clustering using AS events identified three robust clusters of patients with distinguished pathological and prognostic features. Moreover, each cluster was also associated with distinct genomic alterations. Finally, we developed and validated an AS‐related signature with Cox proportional hazards model. The signature, significantly associated with clinical and molecular features, could serve as an independent prognostic factor for lower‐grade diffuse gliomas. Thus, our results indicated that AS events could discriminate molecular subtypes and have prognostic impact in lower‐grade diffuse gliomas.  相似文献   

3.
Breast cancer is one of the most deadly forms of cancer in women worldwide. Better prediction of breast cancer prognosis is essential for more personalized treatment. In this study, we aimed to infer patient‐specific subpathway activities to reveal a functional signature associated with the prognosis of patients with breast cancer. We integrated pathway structure with gene expression data to construct patient‐specific subpathway activity profiles using a greedy search algorithm. A four‐subpathway prognostic signature was developed in the training set using a random forest supervised classification algorithm and a prognostic score model with the activity profiles. According to the signature, patients were classified into high‐risk and low‐risk groups with significantly different overall survival in the training set (median survival of 65 vs 106 months, = 1.82e‐13) and test set (median survival of 75 vs 101 months, = 4.17e‐5). Our signature was then applied to five independent breast cancer data sets and showed similar prognostic values, confirming the accuracy and robustness of the subpathway signature. Stratified analysis suggested that the four‐subpathway signature had prognostic value within subtypes of breast cancer. Our results suggest that the four‐subpathway signature may be a useful biomarker for breast cancer prognosis.  相似文献   

4.
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an estimated 1.8 million new cases worldwide and associated with high mortality rates of 881 000 CRC‐related deaths in 2018. Screening programs and new therapies have only marginally improved the survival of CRC patients. Immune‐related genes (IRGs) have attracted attention in recent years as therapeutic targets. The aim of this study was to identify an immune‐related prognostic signature for CRC. To this end, we combined gene expression and clinical data from the CRC data sets of The Cancer Genome Atlas (TCGA) into an integrated immune landscape profile. We identified a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of which 18 were survival related according to univariate Cox analysis. Stepwise multivariate Cox proportional hazards analysis established an immune‐related prognostic signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. The predictive ability of this signature for 3‐ and 5‐year overall survival was determined using receiver operating characteristics (ROC), and the respective areas under the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8‐IRG signature correlated significantly with tumour stage, invasion, lymph node metastasis and distant metastasis by univariate Cox analysis, and was established an independent prognostic factor by multivariate Cox regression analysis for CRC. Gene set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic signature and various biological pathways. Focal adhesions and ECM‐receptor interactions were positively correlated with the risk scores, while cytosolic DNA sensing and metabolism‐related pathways were negatively correlated. Finally, the bioinformatics results were validated by real‐time RT?qPCR. In conclusion, we identified and validated a novel, immune‐related prognostic signature for patients with CRC, and this signature reflects the dysregulated tumour immune microenvironment and has a potential for better CRC patient management.  相似文献   

5.
6.
BackgroundThis study aimed to identify a series of prognostically relevant immune features by immunophenoscore. Immune features were explored using MRI radiomics features to prediction the overall survival (OS) of lower-grade glioma (LGG) patients and their response to immune checkpoints.MethodLGG data were retrieved from TCGA and categorized into training and internal validation datasets. Patients attending the First Affiliated Hospital of Harbin Medical University were included in an external validation cohort. An immunophenoscore-based signature was built to predict malignant potential and response to immune checkpoint inhibitors in LGG patients. In addition, a deep learning neural network prediction model was built for validation of the immunophenoscore-based signature.ResultsImmunophenotype-associated mRNA signatures (IMriskScore) for outcome prediction and ICB therapeutic effects in LGG patients were constructed. Deep learning of neural networks based on radiomics showed that MRI radiomic features determined IMriskScore. Enrichment analysis and ssGSEA correlation analysis were performed. Mutations in CIC significantly improved the prognosis of patients in the high IMriskScore group. Therefore, CIC is a potential therapeutic target for patients in the high IMriskScore group. Moreover, IMriskScore is an independent risk factor that can be used clinically to predict LGG patient outcomes.ConclusionsThe IMriskScore model consisting of a sets of biomarkers, can independently predict the prognosis of LGG patients and provides a basis for the development of personalized immunotherapy strategies. In addition, IMriskScore features were predicted by MRI radiomics using a deep learning approach using neural networks. Therefore, they can be used for the prognosis of LGG patients.  相似文献   

7.
Although several altered metabolic genes have been identified to be involved in the tumorigenesis and advance of pancreatic cancer (PC), their prognostic values remained unclear. The purpose of this study was to explore new targets and establish a metabolic signature to predict prognosis and chemotherapy response for optimal individualized treatment. The expression data of PC patients from two independent cohorts and metabolism-related genes from KEGG were utilized and analyzed for the establishment of the signature via lasso regression. Then, the differentially expressed candidate genes were further confirmed via online data mining platform and qRT-PCR of clinical specimens. Then, the analyses of gene set enrichment, mutation, and chemotherapeutic response were performed via R package. As results showed, 109 differentially expressed metabolic genes were screened out in PC. Then a metabolism-related five-gene signature comprising B3GNT3, BCAT1, KYNU, LDHA, and TYMS was constructed and showed excellent ability for predicting survival. A novel nomogram coordinating the metabolic signature and other independent prognostic parameters was developed and showed better predictive power in predicting survival. In addition, this metabolic signature was significantly involved in the activation of multiple oncological pathways and regulation of the tumor immune microenvironment. The patients with high risk scores had higher tumor mutation burdens and were prone to be more sensitive to chemotherapy. In summary, our work identified a new metabolic signature and established a superior prognostic nomogram which may supply more indications to explore novel strategies for diagnosis and treatment.  相似文献   

8.
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post‐operative radiotherapy, we used miRNA microarray and qRT‐PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan‐Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR‐200a‐3p, miR‐30b‐5p, miR‐3161, miR‐3605‐5p, miR‐378b and miR‐4451 were up‐regulated, while miR‐200c‐3p, miR‐429 and miR‐4701 were down‐regulated after validation. Moreover, the patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly worse overall survival (OS) and disease‐specific survival (DSS) than did those with low expression (log‐rank P < .05). Patients with a high‐risk score had significant worse OS and DSS than those with low‐risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly high risk of overall death and death owing to HSCC and patients with a high‐risk score has approximately 2‐fold increased risk in overall death and death owing to HSCC compared with those with a low‐risk score. These findings indicated that the 3‐miRNA‐based signature may be a novel independent prognostic biomarker for patients given surgery and post‐operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.  相似文献   

9.
Metastasis‐related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis‐associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis‐free survival (MFS) in the training set (GSE20685, n = 319). A metastasis‐associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high‐ and low‐risk groups in the training cohort. Patients with high‐risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53‐5.98; P < 0.001), disease‐free survival (DFS) (HR 4.69, 2.93‐7.50; P < 0.001) and overall survival (HR 4.06, 2.56‐6.45; P < 0.001) than patients with low‐risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical‐related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4‐mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.  相似文献   

10.
Gliomas, as the most lethal and malignant brain tumours in adults, remain a major challenge worldwide. DNA damage and repair‐related genes (DDRRGs) appear to play a significant role in gliomas, but the studies of DDRRGs are still insufficient. Herein, we systematically explored and analysed 1547 DDRRGs in 938 glioma samples from TCGA and CGGA datasets. Using least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a 16‐DDRRG signature, characterized by high‐risk and low‐risk patterns. This risk model harbours robust predictive capability for overall survival of glioma patients. We found the high‐risk score is strongly associated with well‐known malignant features of gliomas, such as the mesenchymal subtype, IDH‐wildtype, 1p/19q non‐codeletion and MGMT promoter unmethylated status. In addition, we found that the high‐risk score is also linked with multiple oncogenic pathways and therapeutic resistance. Significantly, we found the high‐risk group has higher enrichment of immunosuppressive cells (M2‐type macrophages, Tregs and MDSCs) and immune inhibition biomarkers (PD‐1, PD‐L1 and CTLA‐4). Lastly, we proved that SMC4, which has the highest positive regression coefficient in our risk model, is strongly linked with malignant progression and TMZ resistance of gliomas in a E2F1‐dependent manner.  相似文献   

11.
Due to the lack of a suitable gene signature, it is difficult to assess the hypoxic exposure of HCC tissues. The clinical value of assessing hypoxia in HCC is short of tissue-level evidence. We tried to establish a robust and HCC-suitable hypoxia signature using microarray analysis and a robust rank aggregation algorithm. Based on the hypoxia signature, we obtained a hypoxia-associated HCC subtypes system using unsupervised hierarchical clustering and a hypoxia score system was provided using gene set variation analysis. A novel signature containing 21 stable hypoxia-related genes was constructed to effectively indicate the exposure of hypoxia in HCC tissues. The signature was validated by qRT-PCR and compared with other published hypoxia signatures in multiple large-size HCC cohorts. The subtype of HCC derived from this signature had different prognosis and other clinical characteristics. The hypoxia score obtained from the signature could be used to indicate clinical characteristics and predict prognoses of HCC patients. Moreover, we reveal a landscape of immune microenvironments in patients with different hypoxia score. In conclusion, we identified a novel HCC-suitable 21-gene hypoxia signature that could be used to estimate the hypoxia exposure in HCC tissues and indicated prognosis and a series of important clinical features in HCCs. It may enable the development of personalized counselling or treatment strategies for HCC patients with different levels of hypoxia exposure.  相似文献   

12.
13.
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six‐snoRNA signature and divided patients into high‐risk or low‐risk groups. We found patients in high‐risk group had significantly shorter overall survival and recurrence‐free survival than those in low‐risk group in test series, validation series and entire series by Kaplan‐Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six‐snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six‐snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.  相似文献   

14.
Bladder cancer is a common malignant tumour worldwide. Epithelial–mesenchymal transition (EMT)-related biomarkers can be used for early diagnosis and prognosis of cancer patients. To explore, accurate prediction models are essential to the diagnosis and treatment for bladder cancer. In the present study, an EMT-related long noncoding RNA (lncRNA) model was developed to predict the prognosis of patients with bladder cancer. Firstly, the EMT-related lncRNAs were identified by Pearson correlation analysis, and a prognostic EMT-related lncRNA signature was constructed through univariate and multivariate Cox regression analyses. Then, the diagnostic efficacy and the clinically predictive capacity of the signature were assessed. Finally, Gene set enrichment analysis (GSEA) and functional enrichment analysis were carried out with bioinformatics. An EMT-related lncRNA signature consisting of TTC28-AS1, LINC02446, AL662844.4, AC105942.1, AL049840.3, SNHG26, USP30-AS1, PSMB8-AS1, AL031775.1, AC073534.1, U62317.2, C5orf56, AJ271736.1, and AL139385.1 was constructed. The diagnostic efficacy of the signature was evaluated by the time-dependent receiver-operating characteristic (ROC) curves, in which all the values of the area under the ROC (AUC) were more than 0.73. A nomogram established by integrating clinical variables and the risk score confirmed that the signature had a good clinically predict capacity. GSEA analysis revealed that some cancer-related and EMT-related pathways were enriched in high-risk groups, while immune-related pathways were enriched in low-risk groups. Functional enrichment analysis showed that EMT was associated with abundant GO terms or signaling pathways. In short, our research showed that the 14 EMT-related lncRNA signature may predict the prognosis and progression of patients with bladder cancer.  相似文献   

15.
High‐grade serous ovarian carcinomas (HGSOCs) were among the tumours with an unsatisfactory outcome of immune checkpoint inhibitors (ICIs). It is imperative to develop feasible biomarker for identifying responsive candidates and guiding precise immunotherapy for HGSOC patients. Here, we analysed genomic data of patients with HGSOCs to depict their immunological phenotype of tumour microenvironment (TME) and figure out the major determinants of immunogenicity. In comparison with other solid tumours, we observed the lowest levels of PD‐L1, total mutation burden (TMB) and cytolytic molecules in HGSOCs. Surprisingly, TMB is not certainly positively related to tumour immune response as it failed to predict the response to ICIs in a considerable portion of patients in previous clinical trials. By a machine learning approach in search of biomarkers for immunotherapy implications for HGSOCs, we identified the ten most dominant factors determining the immunogenicity of HGSOCs. Interestingly, we found that BRCA1 mutated tumours presented a potent immunogenic phenotype, independent of TMB, meeting the criteria of both our dominant factors and the determinants of immunogenicity established before. Our findings provide evidence that BRCA1‐mutation may be served as a predictive biomarker in guiding ICI therapies for the patients with HGSOCs.  相似文献   

16.
17.
18.
DNA methylation is an important biological regulatory mechanism that changes gene expression without altering the DNA sequence. Increasing studies have revealed that DNA methylation data play a vital role in the field of oncology. However, the methylation site signature in triple‐negative breast cancer (TNBC) remains unknown. In our research, we analysed 158 TNBC samples and 98 noncancerous samples from The Cancer Genome Atlas (TCGA) in three phases. In the discovery phase, 86 CpGs were identified by univariate Cox proportional hazards regression (CPHR) analyses to be significantly correlated with overall survival (P < 0.01). In the training phase, these candidate CpGs were further narrowed down to a 15‐CpG‐based signature by conducting least absolute shrinkage and selector operator (LASSO) Cox regression in the training set. In the validation phase, the 15‐CpG‐based signature was verified using two different internal sets and one external validation set. Furthermore, a nomogram comprising the CpG‐based signature and TNM stage was generated to predict the 1‐, 3‐ and 5‐year overall survival in the primary set, and it showed excellent performance in the three validation sets (concordance indexes: 0.924, 0.974 and 0.637). This study showed that our nomogram has a precise predictive effect on the prognosis of TNBC and can potentially be implemented for clinical treatment and diagnosis.  相似文献   

19.
Recent studies have found that the acetaldehyde dehydrogenase 1A3 (ALDH1A3) gene is a marker of glioma stem cells. A total of 115 brain glioma specimens were collected and classified into grade I–IV, while non‐tumor brain tissue specimens, taken from 12 patients of vascular malformation surgery, were used as control. ALDH1A3 gene promoter methylation in glioma tissues was detected by pyrosequencing, while immunohistochemistry and western blot were used to detect ALDH1A3 protein expressions in different grades of glioma tissues and normal brain tissues. The expression of ALDH1A3 in the glioma cell line U87 was detected by quantitative real‐time polymerase chain reaction and RNA‐Seq technology was applied to investigate differentially expressed genes before and after silencing the ALDH1A3 gene. Among the 115 glioma tissue specimens, 50 (43.48%) showed low and 65 (56.52%) high expression of ALDH1A3, but no expression was detected in the control. Univariate and multivariate COX regression analyses showed that the patient's tumor pathological grade, the methylation status of ALDH1A3 promoter, and the expression of ALDH1A3 protein were risk factors for progression‐free survival (PFS) and overall survival (OS) (all P < 0.05) and the OS of mice with silenced ALDH1A3 in a glioma nude mouse model was prolonged. U87 experiments revealed that ALDH1A3 expression had significant effects on apoptosis, proliferation, cell cycle, mitochondrial membrane potential, glucose consumption, lactate production, invasion ability, and expression of the pyruvate kinase M2 (PKM2) and hexokinase 2 (HK2) in glioma cells. ALDH1A3 protein expression is a marker for poor PFS and OS in glioma patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号