首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.  相似文献   

4.
α‐Synuclein (aSyn) toxicity is associated with cell cycle alterations, activation of DNA damage responses (DDR), and deregulation of autophagy. However, the relationships between these phenomena remain largely unknown. Here, we demonstrate that in a yeast model of aSyn toxicity and aging, aSyn expression induces Ras2‐dependent growth signaling, cell cycle re‐entry, DDR activation, autophagy, and autophagic degradation of ribonucleotide reductase 1 (Rnr1), a protein required for the activity of ribonucleotide reductase and dNTP synthesis. These events lead to cell death and aging, which are abrogated by deleting RAS2, inhibiting DDR or autophagy, or overexpressing RNR1. aSyn expression in human H4 neuroglioma cells also induces cell cycle re‐entry and S‐phase arrest, autophagy, and degradation of RRM1, the human homologue of RNR1, and inhibiting autophagic degradation of RRM1 rescues cells from cell death. Our findings represent a model for aSyn toxicity that has important implications for understanding synucleinopathies and other age‐related neurodegenerative diseases.  相似文献   

5.
6.
Myelocytomatosis oncogene (c‐MYC) is a well‐known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well‐known chromosomal modification genes. The aim of this study was to elucidate the role of c‐MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c‐MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c‐MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c‐MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c‐MYC knocked‐down human umbilical cord blood‐derived MSCs, whereas they were increased in c‐MYC overexpressing cells. Similarly, RT‐PCR and Western blotting results revealed that HDAC2 expression was decreased in c‐MYC knocked‐down and increased in c‐MYC overexpressing hMSCs. Database indicates presence of c‐MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c‐MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c‐MYC over HDAC2 and PcG genes. c‐MYCs’ regulatory role over HDAC2 was also confirmed in human adipose tissue‐derived MSCs and bone‐marrow derived MSCs. From this finding, it can be concluded that c‐MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.  相似文献   

7.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

8.
9.
Sip1/tuftelin‐interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non‐small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis. Cell cycle arrest at the G2/M phase was associated with the expression and activity of the cyclin B1‐CDK1 (cyclin‐dependent kinase 1) complex. We also provide evidence that STIP knockdown induced apoptosis by activating both caspase‐9 and caspase‐3 and by altering the Bcl‐2/Bax expression ratio. RNA sequencing data indicated that the MAPK mitogen‐activated protein kinases, Wnt, PI3K/AKT, and NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells) signalling pathways might be involved in STIP‐mediated tumour regulation. Collectively, these results suggest that STIP may be a novel potential diagnostic and therapeutic target for NSCLC.  相似文献   

10.
11.
It has been reported that miR‐376a is involved in the formation and progression of several types of cancer. However, the expression and function of miR‐376a is still unknown in non‐small cell lung carcinomas (NSCLC). In this study, the expression of miR‐376a in NSCLC tissues and cell lines were examined by real‐time PCR, the effects of miR‐376a on cell proliferation, apoptosis and invasion were evaluated in vitro. Luciferase reporter assay was performed to identify the targets of miR‐376a. The results showed that miR‐376a was significantly downregulated in NSCLC tissues and cell lines. Restoration of miR‐376a in NSCLC cell line A549 significantly inhibited cell proliferation, increased cell apoptosis and suppressed cell invasion, compared with control‐transfected A549 cells. Luciferase reporter assay showed that c‐Myc, an oncogene that regulating cell survival, angiogenesis and metastasis, was a direct target of miR‐376a. Over‐expression of miR‐376a decreased the mRNA and protein levels of c‐Myc in A549 cells. In addition, upregulation of c‐Myc inhibited miR‐376a‐induced inhibition of cell proliferation and invasion in A549 cells. Therefore, our results indicate a tumor suppressor role of miR‐376a in NSCLC by targeting c‐Myc. miR‐376a may be a promising therapeutic target for NSCLC.  相似文献   

12.
Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. We previously showed that solamargine, one natural phytochemicals from traditional plants, inhibited the growth of lung cancer cells through inhibition of prostaglandin E2 (PGE2) receptor EP4. However, the potential downstream effectors of EP4 involving in the anti‐lung cancer effects of solamargine still remained to be determined. In this study, we further verified that solamargine inhibited growth of non‐small‐cell lung cancer (NSCLC) cells in multiple cell lines. Mechanistically, solamargine increased phosphorylation of ERK1/2. Moreover, solamargine inhibited the protein expression of DNA methyltransferase 1 (DNMT1) and c‐Jun, which were abrogated in cells treated with MEK/ERK1/2 inhibitor (PD98059) and transfected with exogenously expressed DNMT1 gene, respectively. Interestingly, overexpressed DNMT1 gene antagonized the effect of solamargine on c‐Jun protein expression. Intriguingly, overexpressed c‐Jun blocked solamargine‐inhibited lung cancer cell growth, and feedback resisted the solamargine‐induced phosphorylation of ERK1/2. A nude mouse xenograft model implanted with lung cancer cells in vivo confirmed the results in vitro. Collectively, our results show that solamargine inhibits the growth of human lung cancer cells through reduction of EP4 protein expression, followed by increasing ERK1/2 phosphorylation. This results in decrease in DNMT1 and c‐Jun protein expressions. The inter‐correlations between EP4, DNMT1 and c‐Jun and feedback regulation of ERK1/2 by c‐Jun contribute to the overall responses of solamargine in this process. This study uncovers an additional novel mechanism by which solamargine inhibits growth of human lung cancer cells.  相似文献   

13.
HLA‐G has been documented both in establishment of anti‐tumour immune responses and in tumour evasion. To investigate the clinical relevance of HLA‐G in non‐small‐cell lung cancer (NSCLC), expression status and potential significance of HLA‐G in NSCLC were analysed. In this study, HLA‐G expression in 101 NSCLC primary lesions and plasma soluble HLA‐G (sHLA‐G) from 91 patients were analysed with immunohistochemistry and ELISA, respectively. Correlations between HLA‐G status and various clinical parameters including survival time were evaluated. Meanwhile, functional analysis of transfected cell surface HLA‐G expression and plasma sHLA‐G form NSCLC patients on natural killer (NK) cell cytolysis were performed. Data revealed that HLA‐G was expressed in 41.6% (42/101) NSCLC primary lesions, while undetectable in adjacent normal lung tissues. HLA‐G expression in NSCLC lesions was strongly correlated to disease stages (P= 0.002). Plasma sHLA‐G from NSCLC patients was markedly higher than that in normal controls (P= 0.004), which was significantly associated with the disease stages (I versus IV, P= 0.025; II versus IV, P= 0.029). Patient plasma sHLA‐G level (≥median, 32.0 U/ml) had a significantly shorter survival time (P= 0.044); however, no similar significance was observed for the lesion HLA‐G expression. In vitro data showed that both cell surface HLA‐G and patient plasma sHLA‐G could dramatically decrease the NK cell cytolysis. Our findings indicated that both lesion HLA‐G expression and plasma sHLA‐G in NSCLC is related to the disease stage and can exert immunosuppression to the NK cell cytolysis, indicating that HLA‐G could be a potential therapeutic target. Moreover, plasma sHLA‐G in NSCLC patients could be used as a prognosis factor for NSCLC.  相似文献   

14.
Non–small‐cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR‐198. However, the underlying molecular mechanisms of miR‐198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR‐198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR‐198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR‐198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR‐198 using mimics or inhibitors to examine the effects of miR‐198 on 4‐Gy–irradiated A549 and SPCA‐1 cells in vitro. Upregulating miR‐198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR‐198 inhibition produced a reciprocal result. PHA665752, a selective small‐molecule c‐Met inhibitor, potently inhibited hepatocyte growth factor (HGF)‐stimulated and constitutive c‐Met phosphorylation and rescued 4‐Gy–irradiated A549 and SPCA‐1 cells from miR‐198 inhibition. Most importantly, we established tumor xenografts of 4‐Gy–irradiated A549 and SPCA‐1 cells in nude mice and found that miR‐198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR‐198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.  相似文献   

15.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

16.
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.  相似文献   

17.
Our recent study showed that bradykinin increases cell cycling progression and migration of human cardiac c‐Kit+ progenitor cells by activating pAkt and pERK1/2 signals. This study investigated whether bradykinin‐mediated Ca2+ signalling participates in regulating cellular functions in cultured human cardiac c‐Kit+ progenitor cells using laser scanning confocal microscopy and biochemical approaches. It was found that bradykinin increased cytosolic free Ca2+ () by triggering a transient Ca2+ release from ER IP3Rs followed by sustained Ca2+ influx through store‐operated Ca2+ entry (SOCE) channel. Blockade of B2 receptor with HOE140 or IP3Rs with araguspongin B or silencing IP3R3 with siRNA abolished both Ca2+ release and Ca2+ influx. It is interesting to note that the bradykinin‐induced cell cycle progression and migration were not observed in cells with siRNA‐silenced IP3R3 or the SOCE component TRPC1, Orai1 or STIM1. Also the bradykinin‐induced increase in pAkt and pERK1/2 as well as cyclin D1 was reduced in these cells. These results demonstrate for the first time that bradykinin‐mediated increase in free via ER‐IP3R3 Ca2+ release followed by Ca2+ influx through SOCE channel plays a crucial role in regulating cell growth and migration via activating pAkt, pERK1/2 and cyclin D1 in human cardiac c‐Kit+ progenitor cells.  相似文献   

18.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

19.
20.
Cripto‐1 (CR‐1) is related to the biological behaviour and prognosis of carcinomas. The purpose of this study was to investigate the significance of CR‐1 expression in surgically resected stage I non‐small cell lung cancer (NSCLC). One hundred and forty‐eight patients with completely resected stage I NSCLC and available clinical follow‐up data were assessed. The protein expression of CR‐1 in the tumours was detected by immunohistochemistry. CR‐1 was highly expressed in 64 of 148 tumours. Among patients with high CR‐1 expression, progression‐free survival and overall survival rate were significantly lower than those of patients with low CR‐1 levels (P = .013 and P = .019, respectively). The incidence of distant metastasis in patients with high CR‐1 expression was significantly higher than that of in patients with low CR‐1 expression (57.13% vs 21.43%, P = .001). The results of the multivariate analysis confirmed that a high CR‐1 was a significant factor for poor prognosis. In conclusion, CR‐1 could be a useful prognostic factor in patients with stage I NSCLC, likely as an indicator of the metastatic propensity of the tumour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号