首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Hearing dysfunction has been associated with Alzheimer's disease (AD) in humans, but there is little data on the auditory function of mouse models of AD. Furthermore, characterization of hearing ability in mouse models is needed to ensure that tests of cognition that use auditory stimuli are not confounded by hearing dysfunction. Therefore, we assessed acoustic startle response and pre‐pulse inhibition in the double transgenic 5xFAD mouse model of AD from 3–4 to 16 months of age. The 5xFAD mice showed an age‐related decline in acoustic startle as early as 3–4 months of age. We subsequently tested auditory brainstem response (ABR) thresholds at 4 and 13–14 months of age using tone bursts at frequencies of 2–32 kHz. The 5xFAD mice showed increased ABR thresholds for tone bursts between 8 and 32 kHz at 13–14 months of age. Finally, cochleae were extracted and basilar membranes were dissected to count hair cell loss across the cochlea. The 5xFAD mice showed significantly greater loss of both inner and outer hair cells at the apical and basal ends of the basilar membrane than wild‐type mice at 15–16 months of age. These results indicate that the 5xFAD mouse model of AD shows age‐related decreases in acoustic startle responses, which are at least partially due to age‐related peripheral hearing loss. Therefore, we caution against the use of cognitive tests that rely on audition in 5xFAD mice over 3–4 months of age, without first confirming that performance is not confounded by hearing dysfunction.  相似文献   

2.
A recent study reported lower anxiety in the 5xFAD transgenic mouse model of Alzheimer's disease, as measured by reduced time on the open arms of an elevated plus maze. This is important because all behaviors in experimental animals must be interpreted in light of basal anxiety and response to novel environments. We conducted a comprehensive anxiety battery in the 5xFAD transgenics and replicated the plus‐maze phenotype. However, we found that it did not reflect reduced anxiety, but rather abnormal avoidance of the closed arms on the part of transgenics and within‐session habituation to the closed arms on the part of wild‐type controls. We noticed that the 5xFAD transgenics did not engage in the whisker‐barbering behavior typical of mice of this background strain. This is suggestive of abnormal social behavior, and we suspected it might be related to their avoidance of the closed arms on the plus maze. Indeed, transgenic mice exhibited excessive home‐cage social behavior and impaired social recognition, and did not permit barbering by wild‐type mice when pair‐housed. When their whiskers were snipped the 5xFAD transgenics no longer avoided the closed arms on the plus maze. Examination of parvalbumin (PV) staining showed a 28.9% reduction in PV+ inhibitory interneurons in the barrel fields of 5xFAD mice, and loss of PV+ fibers in layers IV and V. This loss of vibrissal inhibition suggests a putatively aversive overstimulation that may be responsible for the transgenics' avoidance of the closed arms in the plus maze .  相似文献   

3.
Emerging evidence suggests that dysregulation stress hormones, such as glucocorticoids, in aged persons put them at a higher risk to develop Alzheimer's disease (AD). However, the mechanisms underlying such vulnerability remain to be unraveled. Pharmacologic inhibition of 5‐lipoxygenase (5LO), an active player in AD pathogenesis whose protein level increases with aging in the human, has been shown to blunt glucocorticoid‐mediated amyloid β (Ab) formation in vitro. In this article, we investigated the role of this pathway in modulating the development of the corticosteroid‐dependent AD‐like phenotype in the triple transgenic mice (3xTg). Dexamethasone was administered for 1 week to 3xTg or 3xTg genetically deficient for 5LO (3xTg/5LO?/?) mice, and its effect on memory, amyloid‐β and tau levels, and metabolism assessed. At the end of the treatment, we observed that dexamethasone did not induce changes in behavior. Compared with controls, treated mice did not show significant alterations in brain soluble Aβ levels. While total tau protein levels were unmodified in all groups, we found that dexamethasone significantly increased tau phosphorylation at S396, as recognized by the antibody PHF‐13, which was specifically associated with an increase in the GSK3β activity. Additionally, dexamethasone‐treated mice had a significant increase in the tau insoluble fraction and reduction in the postsynaptic protein PDS‐95. By contrast, these modifications were blunted in the 3xTg/5LO?/? mice. Our findings highlight the functional role that 5LO plays in stress‐induced AD tau pathology and support the hypothesis that pharmacologic inhibition of this enzyme could be a useful tool for individuals with this risk factor.  相似文献   

4.
We previously demonstrated that ibrutinib modulates LPS‐induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer''s disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non‐amyloidogenic pathway of APP cleavage, decreased Aβ‐induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin‐dependent kinase‐5 (p‐CDK5). Importantly, tau‐mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long‐term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short‐ and long‐term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3‐kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD‐associated pathology and cognitive function and may be a potential therapy for AD.  相似文献   

5.
Blood–brain barrier (BBB) breakdown and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer''s disease (AD), a neurodegenerative disease characterized by cognitive deficits and neuronal loss. Besides vitamin C being as one of the important antioxidants, recently, it has also been reported as a modulator of BBB integrity and mitochondria morphology. Plasma levels of vitamin C are decreased in AD patients, which can affect disease progression. However, investigation using animal models on the role of vitamin C in the AD pathogenesis has been hampered because rodents produce with no dependence on external supply. Therefore, to identify the pathogenic importance of vitamin C in an AD mouse model, we cross-bred 5 familial Alzheimer''s disease mutation (5XFAD) mice (AD mouse model) with ι-gulono-γ-lactone oxidase (Gulo) knockout (KO) mice, which are unable to synthesize their own vitamin C, and produced Gulo KO mice with 5XFAD mice background (KO-Tg). These mice were maintained on either low (0.66 g/l) or high (3.3 g/l) supplementation of vitamin C. We found that the higher supplementation of vitamin C had reduced amyloid plaque burden in the cortex and hippocampus in KO-Tg mice, resulting in amelioration of BBB disruption and mitochondrial alteration. These results suggest that intake of a larger amount of vitamin C could be protective against AD-like pathologies.  相似文献   

6.
7.
Microtubule‐associated protein Tau, abundant in the central nervous system (CNS), plays crucial roles in microtubule assembly and stabilization. Abnormal Tau phosphorylation and aggregation are a common pathogenic hallmark in Alzheimer's disease (AD). Hyperphosphorylation of Tau could change its conformation and result in self‐aggregation, increased oxidative stress, and neuronal death. In this study, we examined the potential of licochalcone A (a natural chalcone) and five synthetic derivatives (LM compounds) for inhibiting Tau misfolding, scavenging reactive oxygen species (ROS) and providing neuroprotection in human cells expressing proaggregant ΔK280 TauRD‐DsRed. All test compounds were soluble up to 100 μM in cell culture media and predicted to be orally bioavailable and CNS‐active. Among them, licochalcone A and LM‐031 markedly reduced Tau misfolding and associated ROS, promoted neurite outgrowth, and inhibited caspase 3 activity in ΔK280 TauRD‐DsRed 293 and SH‐SY5Y cells. Mechanistic studies showed that LM‐031 upregulates HSPB1 chaperone, NRF2/NQO1/GCLC pathway, and CREB‐dependent BDNF/AKT/ERK/BCL2 pathway in ΔK280 TauRD‐DsRed SH‐SY5Y cells. Decreased neurite outgrowth upon induction of ΔK280 TauRD‐DsRed was rescued by LM‐031, which was counteracted by knockdown of NRF2 or CREB. LM‐031 further rescued the downregulated NRF2 and pCREB, reduced Aβ and Tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin‐induced hyperglycemic 3 × Tg‐AD mice. Our findings strongly indicate the potential of LM‐031 for modifying AD progression by targeting HSPB1 to reduce Tau misfolding and activating NRF2 and CREB pathways to suppress apoptosis and promote neuron survival, thereby offering a new drug development avenue for AD treatment.  相似文献   

8.
Alzheimer's disease (AD) is characterized clinically by memory loss and cognitive decline. Protein kinase A (PKA)‐CREB signaling plays a critical role in learning and memory. It is known that glucose uptake and O‐GlcNAcylation are reduced in AD brain. In this study, we found that PKA catalytic subunits (PKAcs) were posttranslationally modified by O‐linked N‐acetylglucosamine (O‐GlcNAc). O‐GlcNAcylation regulated the subcellular location of PKAcα and PKAcβ and enhanced their kinase activity. Upregulation of O‐GlcNAcylation in metabolically active rat brain slices by O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidenamino) N‐phenylcarbamate (PUGNAc), an inhibitor of N‐acetylglucosaminidase, increased the phosphorylation of tau at the PKA site, Ser214, but not at the non‐PKA site, Thr205. In contrast, in rat and mouse brains, downregulation of O‐GlcNAcylation caused decreases in the phosphorylation of CREB at Ser133 and of tau at Ser214, but not at Thr205. Reduction in O‐GlcNAcylation through intracerebroventricular injection of 6‐diazo‐5‐oxo‐l ‐norleucine (DON), the inhibitor of glutamine fructose‐6‐phosphate amidotransferase, suppressed PKA‐CREB signaling and impaired learning and memory in mice. These results indicate that in addition to cAMP and phosphorylation, O‐GlcNAcylation is a novel mechanism that regulates PKA‐CREB signaling. Downregulation of O‐GlcNAcylation suppresses PKA‐CREB signaling and consequently causes learning and memory deficits in AD.  相似文献   

9.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

10.
Alzheimer's disease (AD) is a neurodegenerative disorder that represents the most common type of dementia among elderly people. Amyloid beta (Aβ) peptides in extracellular Aβ plaques, produced from the amyloid precursor protein (APP) via sequential processing by β‐ and γ‐secretases, impair hippocampal synaptic plasticity, and cause cognitive dysfunction in AD patients. Here, we report that Aβ peptides also impair another form of synaptic plasticity; cerebellar long‐term depression (LTD). In the cerebellum of commonly used AD mouse model, APPswe/PS1dE9 mice, Aβ plaques were detected from 8 months and profound accumulation of Aβ plaques was observed at 18 months of age. Biochemical analysis revealed relatively high levels of APP protein and Aβ in the cerebellum of APPswe/PS1dE9 mice. At pre‐Aβ accumulation stage, LTD induction, and motor coordination are disturbed. These results indicate that soluble Aβ oligomers disturb LTD induction and cerebellar function in AD mouse model.

  相似文献   


11.
Alzheimer's disease is characterized by two pathological hallmarks, the intracellular deposition of hyperphosphorylated Tau protein and the extracellular deposition of Aβ1–40/42, both being targets for immunotherapy. This study evaluates the immunogenic properties of three AD‐specific B‐cell epitopes (Tau229–237[pT231/pS235], pyroGluAβ3–8, and Aβ37/38–42/43) linked to five foreign T‐cell epitopes (MVFP, TT, TBC Ag85B, PvT19, and PvT53) by immunizing inbred C57BL/6J (H‐2b), SJL/J (H‐2s2), and C3H/HeN (H‐2k) mice. Two promising candidates with respect to MHC II restriction were selected, and two transgenic mouse models of AD, P301S (H‐2b/k) and Tg2576 (H‐2b/s) animals, were immunized with one B‐cell epitope in combination with two T‐cell epitopes. Responders displayed an enhanced immune response compared with wild‐type animals, which supports the vaccine design and the vaccination strategy. The immune response was also characterized by specific IgG subtype titers, which revealed a strong polarization toward the humoral pathway for immunization of phospho‐Tau, whereas for both Aβ vaccines, a mixed cellular/humoral pathway response was observed. Despite the diversity and unpredictability of the immunogenicity of the peptide vaccines, all three peptide vaccine formulations appear to be promising constructs for future evaluation of their therapeutic properties. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Diet supplementation with ketone bodies (acetoacetate and β‐hydroxybuturate) or medium‐length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre‐clinical stage of the disease instead of well after its manifestation. The pre‐clinical stage is characterized by decade‐long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β‐amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate.

  相似文献   


13.
While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.  相似文献   

14.
15.
16.
Short synthetic peptides homologous to the central region of Aβ but bearing proline residues as β‐sheet blockers have been shown in vitro to bind to Aβ with high affinity, partially inhibit Aβ fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood–brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAβ11, an 11‐residue β‐sheet breaker peptide that inhibits Aβ fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I‐YiAβ11 and 125I‐PUT‐YiAβ11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all d ‐enantiomers of YiAβ11 and PUT‐YiAβ11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient × surface area product at the BBB was five‐ sevenfold higher in the cortex and hippocampus for the 125I‐PUT‐d ‐YiAβ11 compared to the 125I‐d ‐YiAβ11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT‐d ‐YiAβ11 retains its ability to partially inhibit Aβ fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five‐ to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine‐modified β‐sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimer's disease. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 371–382, 1999  相似文献   

17.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

18.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号