首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海马(HPC)和前额叶皮层(PFC)的协同作用是记忆加工过程的关键,其相互作用对学习和记忆功能至关重要.大量证据表明,情景记忆的形成、巩固与检索依赖于特征神经节律在PFC和HPC脑区间的同步作用,这些节律包括theta节律、gamma节律和sharp wave ripples (SWRs)节律等.在精神类疾病中患者往往伴随出现学习记忆功能障碍,基于人类和动物的脑电研究均发现以上3种神经节律在HPC和PFC之间的同步性下降,可能作为反映精神病理下认知功能障碍的重要指标.本文从HPC-PFC网络中的神经节律研究出发,总结了theta节律、gamma节律和SWRs节律在两脑区间的协调交互模式在情景记忆中的作用,以及精神分裂症和抑郁症状态下HPC-PFC通路上神经节律的异常表现及其潜在损伤机制,为今后精神疾病的快速诊断提供客观依据.  相似文献   

2.
Changes of neural oscillations at a variety of physiological rhythms are effectively associated with cognitive performance. The present study investigated whether the directional indices of neural information flow (NIF) could be used to symbolize the synaptic plasticity impairment in hippocampal CA3-CA1 network in a rat model of melamine. Male Wistar rats were employed while melamine was administered at a dose of 300 mg/kg/day for 4 weeks. Behavior was measured by the Morris water maze(MWM)test. Local field potentials (LFPs) were recorded before long-term potentiation (LTP) induction. Generalized partial directed coherence (gPDC) and phase-amplitude coupling conditional mutual information (PAC_CMI) were used to measure the unidirectional indices in both theta and low gamma oscillations (LG, ∼30–50 Hz). Our results showed that melamine induced the cognition deficits consistent with the reduced LTP in CA1 area. Phase locking values (PLVs) showed that the synchronization between CA3 and CA1 in both theta and LG rhythms was reduced by melamine. In both theta and LG rhythms, unidirectional indices were significantly decreased in melamine treated rats while a similar variation trend was observed in LTP reduction, implying that the effects of melamine on cognitive impairment were possibly mediated via profound alterations of NIF on CA3-CA1 pathway in hippocampus. The results suggested that LFPs activities at these rhythms were most likely involved in determining the alterations of information flow in the hippocampal CA3-CA1 network, which might be associated with the alteration of synaptic transmission to some extent.  相似文献   

3.
Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms, especially the theta and gamma rhythms. In this study, we investigated the coupling relationship of neural activities between thalamus and medial prefrontal cortex (mPFC) by measuring the phase interactions between theta and gamma oscillations in a depression model of rats. The phase synchronization analysis showed that the phase locking at theta rhythm was weakened in depression. Furthermore, theta-gamma phase locking at n:m (1:6) ratio was found between thalamus and mPFC, while it was diminished in depression state. In addition, the analysis of coupling direction based on phase dynamics showed that the unidirectional influence from thalamus to mPFC was diminished in depression state only in theta rhythm, while it was partly recovered after the memantine treatment in a depression model of rats. The results suggest that the effects of depression on cognitive deficits are modulated via profound alterations in phase information transformation of theta rhythm and theta-gamma phase coupling.  相似文献   

4.
Zhang X  Kendrick KM  Zhou H  Zhan Y  Feng J 《PloS one》2012,7(6):e36472
There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABA(A) receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABA(A,slow) receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus.  相似文献   

5.
We consider the potential role of oscillations in the prefrontal cortex (PFC) in mediating attention, working memory and memory consolidation. Activity in the theta, beta, and gamma bands is related to communication between PFC and different brain areas. While gamma/beta oscillations mediate bottom-up and top-down interactions between PFC and visual cortices, related to attention, theta rhythms are engaged by hippocampal/PFC interplay. These interactions are dynamic, depending on the nature and relevance of the information currently being processed. The profound modifications of the PFC neuronal network associated with changes in oscillatory coherence are controlled by neuromodulators such as dopamine, which thereby allow or prevent the formation of cell assemblies for information encoding and storage.  相似文献   

6.
The EEG mapping study tested age-related changes in power of EEG rhythms from delta to gamma ranges under healthy cognitive aging associated with preserved cognitive abilities and involvement in complex professional activity. 32 subjects of higher age group (HAG, mean age 65.1 +/- 1.18, 14 men and 18 women) and 33 subjects of lower age group (LAG mean age 22.1 +/- 0.38, 18 men and 15 women) participated in the study. Mean power of slow (delta, theta and alpha2) activity decreased and of fast activity (beta, gamma) increased as subject age increased. Compared to subjects of LAG subjects of HAG displayed a reduction in heterogeneity of EEG activity across recording sites. Centro-temporal gradients of power for frequency ranges from delta to beta2 and frontoparietal gradients and hemispheric asymmetry for alpha and beta1 rhythms were smoothed in subjects of HAG. These results suggest that observed age-related changes in baseline EEG may be the prerequisite for compensatory neural recruitment that may be associated as with allocation of more resources in cognitive processes so with reorganization of cortical networks including areas susceptible to physiological changes with aging.  相似文献   

7.
The investigation on the conditions which cause global population oscillatory activities in neural fields, originated some years ago with reference to a kinetic theory of neural systems, as been further deepened in this paper. In particular, the genesis of sharp waves and of some rhythmic activities, such as theta and gamma rhythms, of the hippocampal CA3 field, behaviorally important for their links to learning and memory, has been analyzed with more details. To this aim, the modeling-computational framework previously devised for the study of activities in large neural fields, has been enhanced in such a way that a greater number of biological features, extended dendritic trees—in particular, could be taken into account. By using that methodology, a two-dimensional model of the entire CA3 field has been described and its activity, as it results from the several external inputs impinging on it, has been simulated. As a consequence of these investigations, some hypotheses have been elaborated about the possible function of global oscillatory activities of neural populations of Hippocampus in the engram formation.  相似文献   

8.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

9.
Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms. The present study investigated whether the directionality of neural information flow (NIF) could be used to characterize the synaptic plasticity in thalamocortical (TC) pathway, and examined which frequency field oscillations were mostly related to the cognitive deficiency in depression. Two novel algorithms were employed to determine the coupling interaction between the LD thalamus and medial prefrontal cortex (mPFC) in five frequency bands, using the phase signals of local field potentials (LFP) in these two regions. The results showed that the power of neural activity in mPFC was increased in delta, theta and beta frequency bands in depression. However, the nonlinear characteristics of LFP activity were weakened in depression by means of sample entropy measurements. In the analysis of phase dynamics, the phase synchronization values were reduced in theta rhythm in stressed rats. Importantly, the coupling direction index d and the unidirectional influence from LD thalamus to mPFC were significantly reduced at the theta rhythm in rats in depression, and increased after memantine treatment, which were associated with the LTP alterations and cognitive impairment in our previous report. Moreover, the fact that the reduced entropy value was only found in mPFC might implicate postsynaptic effect involved in synaptic plasticity alteration in the depression model. The results suggest that the effects of depression on cognitive deficits are mediated via profound alterations in information flow in the TC pathway, and the directional index at theta rhythm could be used as a measurement of synaptic plasticity.  相似文献   

10.
Zhang T 《生理学报》2011,63(5):412-422
作为一种有节律的神经活动,神经振荡现象发生在所有的神经系统中,例如大脑皮层、海马、皮层下神经核团以及感觉器官.本综述首先给出了已有的研究结果,即基于theta和gamma频段的同步神经振荡揭示了认知过程的起源与本质,如学习与记忆.然后介绍了关于神经振荡分析的新技术和算法,如表征神经元突触可塑性的神经信息流方向指数,并例...  相似文献   

11.
The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may indeed be the bridge to the episodic memory function in human hippocampus.  相似文献   

12.
Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry.  相似文献   

13.
Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.  相似文献   

14.
Ample evidences demonstrate that cytochrome P450 epoxygenase‐derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti‐inflammatory, and cardiovascular protective effects. In this study, we investigated the effects of endothelium‐specific CYP2J2 overexpression on age‐related insulin resistance and metabolic dysfunction. Endothelium‐specific targeting of the human CYP epoxygenase, CYP2J2, transgenic mice (Tie2‐CYP2J2‐Tr mice) was utilized. The effects of endothelium‐specific CYP2J2 overexpression on aging‐associated obesity, inflammation, and peripheral insulin resistance were evaluated by assessing metabolic parameters in young (3 months old) and aged (16 months old) adult male Tie2‐CYP2J2‐Tr mice. Decreased insulin sensitivity and attenuated insulin signaling in aged skeletal muscle, adipose tissue, and liver were observed in aged adult male mice, and moreover, these effects were partly inhibited in 16‐month‐old CYP2J2‐Tr mice. In addition, CYP2J2 overexpression‐mediated insulin sensitization in aged mice was associated with the amelioration of inflammatory state. Notably, the aging‐associated increases in fat mass and adipocyte size were only observed in 16‐month‐old wild‐type mice, and CYP2J2 overexpression markedly prevented the increase in fat mass and adipocyte size in aged Tie2‐CYP2J2‐Tr mice, which was associated with increased energy expenditure and decreased lipogenic genes expression. Furthermore, these antiaging phenotypes of Tie2‐CYP2J2‐Tr mice were also associated with increased muscle blood flow, enhanced active‐phase locomotor activity, and improved mitochondrial dysfunction in skeletal muscle. Collectively, our findings indicated that endothelium‐specific CYP2J2 overexpression alleviated age‐related insulin resistance and metabolic dysfunction, which highlighted CYP epoxygenase‐EET system as a potential target for combating aging‐related metabolic disorders.  相似文献   

15.
Theta–gamma coupling in the hippocampus is thought to be involved in cognitive processes. A large body of research establishes that the hippocampus plays a crucial role in the organization and maintenance of episodic memory, and that sharp-wave ripples (SWR) contribute to memory consolidation processes. Here, we investigated how the local field potentials in the hippocampal CA1 area adapted along with rats’ behavioral changes within a session during a spatial alternation task that included a 1-s fixation and a 1.5-s delay. We observed that, as the session progressed, the duration from fixation onset to nose-poking in the choice hole reduced as well as the number of premature responses during the delay. Parallel with the behavioral transitions, the power of high gamma during the delay period increased whereas that of low gamma decreased later in the session. Furthermore, the strength of theta–gamma modulation later in the session showed significant increase as compared to earlier in the session. Examining SWR during the reward period, we found that the number of SWR events decreased as well as the power in a wide frequency range during SWR events. In addition, the correlation between SWR and gamma oscillations just before SWR events was higher in the earlier trials than in the later trials. Our findings support the notion that the inputs from CA3 and entorhinal cortex play a critical role in memory consolidation as well as in cognitive processes. We suggest that SWR and the inputs from the two areas serve to stabilize the task behavior and neural activities.  相似文献   

16.
Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could encode the running speed of mice. We found that the amplitude of slow (20-45 Hz) and fast (45-120 Hz) gamma rhythms in the hippocampal local field potential (LFP) increased with running speed. The speed-dependence of gamma amplitude was restricted to a narrow range of theta phases where gamma amplitude was maximal, called the preferred theta phase of gamma. The preferred phase of slow gamma precessed to lower values with increasing running speed. While maximal fast and slow gamma occurred at coincident phases of theta at low speeds, they became progressively more theta-phase separated with increasing speed. These results demonstrate a novel influence of speed on the amplitude and timing of the hippocampal gamma rhythm which could contribute to learning of temporal sequences and navigation.  相似文献   

17.
Gamma and theta oscillations of the hippocampus are known to interact, but the mechanisms underlying such interaction are not well understood. We focus on a previously published computational model of hippocampal activity that shows the gamma rhythms nesting in the theta rhythms, and investigate the dynamical mechanisms underlying that interaction. There are three types of neurons in the model: pyramidal cells, fast-spiking interneurons, and “oriens lacunosum-moelculare” (O-LM cells); the latter is an inhibitory cell whose inhibition has a longer time scale, and which has currents associated with intrinsic theta-rhythm behavior. We identify two main modes of interaction among the slow and the fast rhythms in the model, modulated by the strength of the excitatory synapse on the O-LM cells. Using resets of phases after each pyramidal cell and O-LM spike, we extend the use of the phase transition map (PTM) to encode the stability type of spiking patterns in networks where different frequencies interact. The tailored application of the PTM to the model network measures how the interaction between the shape of the phase response curves and the length of the gamma period determines the number of gamma spikes in theta cycles, and provides an explicit formula for the length of theta intervals in nesting regimes. Using the PTM, we also explain the covariance of the gamma and theta rhythms as drive is changed over some intervals.  相似文献   

18.
Won H  Mah W  Kim E  Kim JW  Hahm EK  Kim MH  Cho S  Kim J  Jang H  Cho SC  Kim BN  Shin MS  Seo J  Jeong J  Choi SY  Kim D  Kang C  Kim E 《Nature medicine》2011,17(5):566-572
Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder that affects ~5% of school-aged children; however, the mechanisms underlying ADHD remain largely unclear. Here we report a previously unidentified association between G protein-coupled receptor kinase-interacting protein-1 (GIT1) and ADHD in humans. An intronic single-nucleotide polymorphism in GIT1, the minor allele of which causes reduced GIT1 expression, shows a strong association with ADHD susceptibility in humans. Git1-deficient mice show ADHD-like phenotypes, with traits including hyperactivity, enhanced electroencephalogram theta rhythms and impaired learning and memory. Hyperactivity in Git1(-/-) mice is reversed by amphetamine and methylphenidate, psychostimulants commonly used to treat ADHD. In addition, amphetamine normalizes enhanced theta rhythms and impaired memory. GIT1 deficiency in mice leads to decreases in ras-related C3 botulinum toxin substrate-1 (RAC1) signaling and inhibitory presynaptic input; furthermore, it shifts the neuronal excitation-inhibition balance in postsynaptic neurons toward excitation. Our study identifies a previously unknown involvement of GIT1 in human ADHD and shows that GIT1 deficiency in mice causes psychostimulant-responsive ADHD-like phenotypes.  相似文献   

19.
Linjie Yu  Jiali Jin  Xing Ye  Yi Liu  Yun Xu 《Aging cell》2017,16(5):1073-1082
The accumulation and deposition of beta‐amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6‐ and 9‐month‐old APPswe/PS1dE9 (APP/PS1) mice compared with that in age‐matched wild‐type C57BL/6 (B6) mice. Lentivirus ‐mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9‐month‐old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6‐month‐old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.  相似文献   

20.
A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging‐associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age‐related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6‐hydroxydopamine (6‐OHDA, a NE depletor) can mimic age‐related NE deficiency, long‐term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age‐related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence‐accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age‐matched, senescence‐resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging‐associated NE depletion and cognitive decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号