首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence‐related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12–13° C) and warm (18–19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold‐treated fish. Analysis of single genes with real‐time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon‐inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm‐treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once‐in‐the‐lifetime migration. As river temperatures continue to increase, it remains to be seen whether or not these cellular defences provide sufficient protection for all O. nerka populations.  相似文献   

7.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

16.
Herbivores regularly ingest natural toxins produced by plants as a defence against herbivory. Recent work suggests that compound toxicity is exacerbated at higher ambient temperatures. This phenomenon, known as temperature‐dependent toxicity (TDT), is the likely result of decreased liver function at warmer temperatures; however, the underlying cause of TDT remains speculative. In the present study, we compared the effects of temperature and dietary plant toxins on differential gene expression in the liver of an herbivorous rodent (Neotoma lepida), using species‐specific microarrays. Expression profiles revealed a greater number of differentially expressed genes at an ambient temperature below the thermal neutral zone for N. lepida (22°C) compared to one within (27°C). Genes and pathways upregulated at 22°C were related to growth and biosynthesis, whereas those upregulated at 27°C were associated with gluconeogenesis, apoptosis and protein misfolding, suggestive of a stressed state for the liver. Additionally, few genes associated with xenobiotic metabolism were induced when woodrats ingested plant toxins compared to nontoxic diets, regardless of temperature. Taken together, the results highlight the important role of ambient temperature on gene expression profiles in the desert woodrat. Temperatures just below the thermal neutral zone might be a favourable state for liver metabolism. Furthermore, the reduction in the number of genes expressed at a temperature within the thermal neutral zone indicates that liver function may be reduced at temperatures that are not typically considered as thermally stressful. Understanding how herbivorous mammals will respond to ambient temperature is imperative to accurately predict the impacts of climate change.  相似文献   

17.
18.

Bombyx mori is a poikilothermic insect and is economically important for silk production. Drastic changes in the ambient temperature have a negative impact on sericulture. However, the reason as to why high temperature is associated with the occurrence of diseases in silkworm and the response of silkworm to low temperature remain unclear and were the focus of the present study. Dazao silkworm exposed to 13 °C (DZ-13), 25 °C (DZ-25), and 37 °C (DZ-37) were used for RNA-seq analysis. There were 478 and 194 upregulated differentially expressed genes (DEGs) in DZ-13 and DZ-37 while 49 and 273 downregulated DEGs in DZ-13 and DZ-37, respectively. Eight DEGs were co-upregulated, in which seven genes were for heat shock proteins (Hsps), implying that Hsps play important roles in the tolerance of silkworm to high and low temperature. Gene ontology analysis revealed that the developmental process was downregulated in DZ-13. All the DEGs in the oxidative phosphorylation and insulin signaling pathways were upregulated in DZ-13. Several cuticular proteins and ATP synthesis-related genes were upregulated in DZ-13, suggesting that thickening of the cuticle and increase in the ATPase expression would help silkworms to protect themselves from low temperature-induced stress. Several immune-related genes, such as BmRel and BmSerpin-2, were downregulated in DZ-37, revealing that the resistance of silkworm is decreased under high temperature shock resulting in susceptibility to pathogens. Thus, the increase in the thermo-tolerance of silkworm should be related to the enhancement in the pathogen resistance.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号