首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Aim To study the effects of the degree of fragmentation of heathland patches on their species richness and species composition, and to infer the ecological mechanisms behind the observed patterns. Location The heathland patches of the north‐western part of Flanders, Belgium. During the last 200 years, the heathland area in this study area has been reduced from c. 10,000 to c. 40 ha, yielding c. 150 small and highly isolated relic fragments. Methods Different isolation measures were calculated for each of the 153 inventoried heathland patches. The influence of isolation, area and habitat diversity on species richness was investigated using correlation techniques. Community composition of the patches was tested for nestedness, and the mechanisms potentially underlying this pattern were determined. Results and main conclusions Both the analyses at the species richness and community composition level yielded evidence for a positive species–area relation. This relation was not caused by higher habitat heterogeneity in larger patches. Patch isolation, measured in different ways, however seemed much more important in explaining species richness and community composition than fragment area. Our results indicate that area effects are overcompensated by the rescue‐effect: if a patch is close to other patches, species can disperse between them and prevent the species from going extinct. Species having a short living seed bank were also more sensitive to isolation than species with a long living seed bank, indicating that the latter most probably depend on the seed bank to survive periods when environmental conditions are harsh. Analogously to the spatial rescue‐effect, the existence of a persistent seed bank may lead to a sort of temporal rescue‐effect, where the extinction of a plant species is prevented through survival in the seed bank of a patch.  相似文献   

2.
Forest-habitat loss and fragmentation reduce connectivity, presenting dispersal challenges for many forest-dependent species with deleterious effects on community structure and diversity. It is expected that avian forest specialists are vulnerable to fragmentation, yet seasonal migrants may be more resilient to isolation effects than sedentary specialists. We surveyed bird communities in 138 habitat patches of the critically endangered Indian Ocean Coastal Belt, South Africa, across a range of isolation distances from mainland forests during the breeding and non-breeding seasons. We quantified taxonomic and functional diversity per patch based on species’ traits and performed 26 generalized linear mixed-effects models on the effects of isolation and the amount of habitat in the surrounding matrix on avian trait-diversity measurements. We compared diversity measures between seasons for evidence of resilience to isolation effects for migrants and compared linear regressions of isolation-distance effects to segmented regressions at various isolation distances to explore dispersal limits of sedentary forest specialists. All avian diversity measures were higher during the breeding season. The amount of surrounding habitat was a positive driver of all diversity measures. Isolation-distance effects had the most negative effect during the breeding season, and on sedentary forest specialists, which were unable to disperse across isolation distances > 500 m. Sedentary forest specialists are a conservation priority given (a) their value in perpetuating ecosystem services and (b) their vulnerability to isolation effects. Migratory forest specialists exhibited resilience to the isolation effect during non-breeding; thus, certain specialized niches may be occupied given the vagility of migratory forest specialists.  相似文献   

3.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

4.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

5.
Abstract

Den sharing among wild brushtail possums (Trichosurus vulpecula) has important implications for disease transmission. This study investigated den sharing in captive possums, and measured interactions between possums sharing dens. Thirty‐four sexually mature possums (16 female, 18 male) were housed in single‐sex or mixed‐sex pairs in large enclosures that contained two dens. Daily patterns of den sharing were recorded for each pair over a 69 day period in the breeding or non‐breeding season. Social behaviour within shared dens was sampled using miniature infrared cameras. Male pairs rarely shared dens in the breeding or non‐breeding seasons (4% and 1% of days respectively) and usually engaged in ‘threats’ and ‘fights’ associated with den defence. Pairs of female possums (in both seasons) and mixed‐sex pairs housed together in the breeding season shared dens most frequently (between 84% and 91% of days), and also spent the most time together in dens each night. While sharing dens, affiliative interactions were frequent, including long periods of ‘touching’, and also ‘food sharing’ and ‘allogrooming’. The preference for den sharing and close contact shown by captive possums highlights the importance of den sharing as a potential route for disease transmission.  相似文献   

6.
In patchy forest areas, the size of the forest patch where birds breed has a strong influence on their breeding success. However, the proximate effects contributing to lowering the breeding success in small forest patches remain unclear; and a shortage of crucial resources in those forest patches has been suggested to account in some degree for this failure. With the aim to further investigate this issue, we have monitored the breeding cycle of blue and great tits in three ‘large’ forest patches (ranging between 26.5 and 29.6 ha) and twelve ‘small’ forest patches (ranging between 1.1 and 2.1 ha) in a Mediterranean area in central Spain, during three years (2011–2013). We also recorded the nestling diet inside the nest-boxes with the aid of handy-cams. Only males significantly differed between forest patch size categories; being on average younger and with better body condition in small patches for great and blue tits respectively. Reproductive traits did not vary between forest patch size categories, but the body condition of blue tit nestlings and the size of great tit nestlings did, being significantly better and larger respectively in large forest patches. The recruitment rate of blue tit nestlings was also higher in large patches. Regarding nestling diet, blue tits did not differ but great tits did, delivering a larger amount of caterpillars in large forest patches. Most variation in the reproductive traits occurred between years, probably due to annual differences in environmental conditions. This study suggests that food supply could be limiting the breeding success of birds above all in small patches, but also in large patches under particular environmental conditions.  相似文献   

7.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

8.
Colchicine treatment of the triploid apple varieties ‘Paragon’ and ‘Stayman’ resulted in 6–3–3 and 3–6–6 chimeras, and 6–3–3 chimera in ‘Baldwin.’ Treatment of a triploid pear selection ‘U.S. 44–3–1’ resulted in totally 6x as well as 6–3–3 and 3–6–6 chimeras. As triploid plants are not suitable for breeding, sexually hexaploid forms (totally 6x or chimeral 3–6–6) of high-quality triploid apples and pears may become very useful as breeding material. The primary purpose of treating the ‘Stayman’ apple was to obtain a 6–3–3 chimera to find out if large cells in the epidermis would reduce or eliminate the severe cracking of fruit of this variety which occurs in some seasons. Chimeral forms in the other plants were to serve as material for comparison with the ‘Stayman’ variety. Observations on the fruit-cracking problem will have to wait until the chimeral plants fruit. Hexaploid tissue in chimeral shoots of all affected plants has grown more slowly than triploid tissue, causing various degrees of malformation of the leaves. Similar reduction in growth due to restricted ploidization in 4–2–2 or 2–4–4 chimeras has not resulted in many other plants, including apples and pears, but was reported in an 8–4–4 chimera in cranberry. Slower growth of 6x tissue in the apple and pear may be attributed to the presence of multiple homologous genes in the duplicated chromosome forms of these particular triploid plants.  相似文献   

9.
The metapopulation concept is widely established in population biology. It predicts that the likelihood of colonization of an empty patch is positively correlated with its connectivity, because colonizers from occupied patches will be more likely to reach an empty patch if they are closer to it. Another prediction is that the likelihood of extinction of an occupied patch will be negatively correlated with its connectivity to other patches, as the occupied patch can be ‘reinforced’ by immigrants from patches that are close by. We tested these predictions using an extensive data set for an epiphytic orchid, Lepanthes rupestris from Puerto Rico. Our data did not support the first prediction, but we found that the likelihood of extinction is negatively correlated with patch connectivity. We hypothesize that this might be because most orchid seeds are wind dispersed and seeds that do not fall immediately below the mother plant are uniformly distributed after a steep leptokurtic distribution. We predict that taxa with similar seed and gene flow characteristics should show similar patterns in the association between colonization/extinction rates and patch connectivity. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 598–606.  相似文献   

10.
Patch occupancy of two hemipterans sharing a common host plant   总被引:5,自引:0,他引:5  
Aim Two hemipteran species were chosen as a study system for the comparative analysis of patch occupancy and spatial population structure of insects sharing a common host plant. This study tested whether (1) the incidence in the host plant patches differed between the two species, and (2) the two species exhibited a different spatial population structure, i.e. were they affected differentially by isolation and area of the host plant patches. Location The porphyry landscape north of Halle (Saale) in Germany comprising 506 patches of the host plant Brachypodium pinnatum. Methods The host plant patches were surveyed for the two hemipterans. To assess the influence of patch quality on species occurrence the patches were characterized by mean cover abundance of B. pinnatum, type of subsoil, slope, exposure, and shading. The spatial configuration of the patches was considered by patch area and isolation. The influence of the habitat factors and the spatial configuration on the occupancy of the two species was analysed by logistic regression. Results Adarrus multinotatus was found in 441 patches, while Neophilaenus albipennis was found in only 90 patches. While A. multinotatus showed virtually no relationship to the habitat factors, the occupancy of N. albipennis was influenced by subsoil type, cover abundance, and shading. The effects of area and isolation on occupancy of the patches also differed between the two species. The occupancy of N. albipennis was determined largely by area and isolation, whereas in A. multinotatus no considerable effect of spatial configuration was found. Main conclusions The study revealed a marked difference between the two hemipteran species in respect of spatial population structure. Adarrus multinotatus built up a ‘patchy population’, whereas N. albipennis showed a ‘metapopulation’ structure within the same set of patches in the same landscape. Spatial population structure was found to be not only a function of spatial configuration of habitat patches, but population structure differed between the habitat generalist A. multinotatus and the habitat specialist N. albipennis.  相似文献   

11.
Metapopulation ecology is a field that is richer in theory than in empirical results. Many existing empirical studies use an incidence function approach based on spatial patterns and key assumptions about extinction and colonization rates. Here we recast these assumptions as hypotheses to be tested using 18 years of historic detection survey data combined with four years of data from a new monitoring program for the Lower Keys marsh rabbit. We developed a new model to estimate probabilities of local extinction and colonization in the presence of nondetection, while accounting for estimated occupancy levels of neighboring patches. We used model selection to identify important drivers of population turnover and estimate the effective neighborhood size for this system. Several key relationships related to patch size and isolation that are often assumed in metapopulation models were supported: patch size was negatively related to the probability of extinction and positively related to colonization, and estimated occupancy of neighboring patches was positively related to colonization and negatively related to extinction probabilities. This latter relationship suggested the existence of rescue effects. In our study system, we inferred that coastal patches experienced higher probabilities of extinction and colonization than interior patches. Interior patches exhibited higher occupancy probabilities and may serve as refugia, permitting colonization of coastal patches following disturbances such as hurricanes and storm surges. Our modeling approach should be useful for incorporating neighbor occupancy into future metapopulation analyses and in dealing with other historic occupancy surveys that may not include the recommended levels of sampling replication.  相似文献   

12.
Habitat structure increases the persistence of many extinction‐prone resource–consumer interactions. Metapopulation theory is one of the leading approaches currently used to explain why local, ephemeral populations persist at a regional scale. Central to the metapopulation concept is the amount of dispersal occurring between patches, too much or too little can result in regional extinction. In this study, the role of dispersal on the metapopulation dynamics of an over‐exploitative host–parasitoid interaction is assessed. In the absence of the parasitoid the highly vagile bruchid, Callosobruchus maculatus, can maintain a similar population size regardless of the permeability of the inter‐patch matrix and exhibits strong negative density‐dependence. After the introduction of the parasitoid the size of the bruchid population decreases with a corresponding increase in the occurrence of empty patches. In this case, limiting the dispersal of both species decouples the interaction to a greater extent and results in larger regional bruchid populations. Given the disparity between the dispersal rates of the two species, it is proposed that the more dispersive host benefits from the reduction in landscape permeability by increasing the opportunity to colonise empty patches and rescue extinction prone populations. Associated with the introduction of the parasitoid is a shift in the strength of density‐dependence as the population moves from bottom–up towards top–down regulation. The importance of local and regional scale measurements is apparent when the role of individual patches on regional dynamics is considered. By only taking regional dynamics into account the importance of dispersal regime on local dynamics is overlooked. Similarly, when local dynamics were examined, patches were found to have different influences on regional dynamics depending on dispersal regime and patch location.  相似文献   

13.
Thompson , Maxine M. (U. California, Davis.) Cytogenetics of Rubus. II. Cytological studies of the varieties ‘Young,’ ‘Boysen’ and related forms. Amer. Jour. Bot. 48(8): 667–673. Illus. 1961.—Chromosome numbers are given for the trailing blackberry varieties, ‘Young’ (2n = 49), ‘Boysen’ (2n = 49), ‘Nectar’ (2n = 49) and for related forms which include the parents of ‘Young,’ ‘Phenomenal’ (2n = 42) and ‘Mayes’ (2n = 56), and 3 cytologically resynthesized ‘Young’ plants (2n = 49) as a basis for interpreting the postulated origin of ‘Young.’ Cytological evidence substantiated the conclusion that ‘Young’ is a hybrid between ‘Phenomenal’ and ‘Mayes.’ Contributions to the understanding of genomic relationships in Rubus are offered from detailed analyses of meiosis in ‘Phenomenal,’ ‘Mayes,’ ‘Young,’ and ‘Boysen.’ ‘Phenomenal’ and ‘Mayes’ both had a very regular meiosis. ‘Young,’ as well as ‘Boysen,’ showed a greater degree of chromosome association than either parent of ‘Young.’ Meiotic behavior in ‘Boysen’ presented a close parallel to that of ‘Young’ which, correlated with morphological similarities and the same 2n chromosome number, suggests a similar origin. The mode of reproduction in ‘Young’ and ‘Boysen’ was found to be sexual on the basis of morphological variation in the open-pollinated (selfed) progeny, the varying aneuploid somatic chromosome numbers in these progeny (2n = 32–54) and aneuploid chromosome numbers in hybrids having either variety as one parent. The productiveness of ‘Young’ and ‘Boysen’ in commercial plantings and their successful utilization in breeding programs indicate a high fertility regardless of their having an odd multiple of the basic number. It is concluded that the production of balanced euploid gametes is not necessarily a criterion of fertility, at least not at this high level of ploidy.  相似文献   

14.
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the ‘more individuals hypothesis’ (MIH) that high‐energy areas are species‐rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 °?48.1 °N; longitudinal range 124.2°?68.7° W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species–energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species–energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species–energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long‐distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species–energy relationships.  相似文献   

15.
This paper considers, for eight species of woodland bird, the factors that influenced both local extinctions and recolonisations in 145 woods over 3 years. In all species, probability of local extinction was inversely related to population size; most local extinctions occurred in woods containing one to three breeding pairs. However, considerable variation in extinction probabilities occurred between species and between years. In addition, the suitability of habitat within a wood (more extinctions in less suitable woods) was important for wren Troglodytes troglodytes, song thrush Turdus philomelos and blue tit Parus caeruleus; also, the structure of the surrounding landscape was important for blue tit, great tit Parus major, and chaffinch Fringilla coelebs (more extinctions in localities with less woodland). In only two species was the probability of recolonisation related to any of the measured variables. Wrens were more likely to recolonise larger woods, whereas song thrushes were more likely to recolonise woods with a high habitat suitability rating and those which are more isolated from other woodland  相似文献   

16.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

17.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

18.
The evolution of reproductive isolation (RI) is a critical step shaping progress towards speciation. In the context of ecological speciation, a critical question is the extent to which specific reproductive barriers important to RI evolve rapidly and predictably in response to environmental differences. Only reproductive barriers with these properties (importance, rapidity, predictability) will drive the diversification of species that are cohesively structured by environment type. One candidate barrier that might exhibit such properties is allochrony, whereby populations breed at different times. We studied six independent lake–stream population pairs of threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) that are known from genetic studies to show RI. However, the specific reproductive barriers driving this RI have proven elusive, leading to a ‘conundrum of missing reproductive isolation’. We here show that breeding times differ among some of the populations, but not in a consistent manner between lakes and streams. Moreover, the timing differences between lake and stream populations within each pair could account for only a small proportion of total RI measured with neutral genetic markers. Allochrony cannot solve the conundrum of missing reproductive isolation in lake–stream stickleback.  相似文献   

19.
Development of methodologies for early selection is one of the most important goals of olive breeding programs at present. In this context, the identification of molecular markers associated with beneficial alleles could allow the development of marker-assisted selection (MAS) strategies in olive breeding programs. Fruit-related and plant vigor traits, which are of key importance for olive selection and breeding, were analyzed during two seasons in a progeny derived from the cross ‘Picual’ × ‘Arbequina.’ Quantitative trait loci (QTL) analyses were performed using MapQTL 4.0. A total of 22 putative QTLs were identified in the map of ‘Arbequina.’ QTLs clustered in linkage groups (LG) 1, 10 and 17. QTLs for oil-related traits located in LG 1 and 10 explained around 20–30 % of the phenotypic variability depending on the season and the trait. QTL for moisture-related traits were detected in LG 1, 10 and 17, and QTLs for the ratio pulp to stone were identified in LG 10 and 17 explaining around 15–20 %. Interaction between QTLs for the same trait was investigated. The significance of these results was discussed considering the co-localization of QTLs and Pearson correlations among traits. Five additional QTLs were detected in the map of ‘Picual.’ Four of them clustered in LG 17 indicating the presence of a QTL for fruit weight explaining around 12.7–15.2 % of the variability. Additionally, a QTL for trunk diameter was detected in LG 14 explaining 16 % of the variation. These results represent an important step toward the application of MAS in olive breeding programs.  相似文献   

20.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry (Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号