首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

2.
The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity‐accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E–deficient (apoE?/?) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE?/? mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute‐phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro‐ and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high‐density lipoprotein (HDL). Moreover, SAA was localized with apoB‐containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE‐deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.  相似文献   

3.
The Src family kinases (SFK) are a group of signalling molecules with important regulatory functions in inflammation and haemostasis. Leucocytes and platelets express multiple isoforms of the SFKs. Previous studies used broad‐spectrum pharmacological inhibitors, or murine models deficient in multiple SFK isoforms, to demonstrate the functional consequences of deficiencies in SFK signalling. Here, we hypothesized that individual SFK operate in a non‐redundant fashion in the thrombo‐inflammatory recruitment of monocyte during atherosclerosis. Using in vitro adhesion assays and single SFK knockout mice crossed with the ApoE?/? model of atherosclerosis, we find that SFK signalling regulates platelet‐dependent recruitment of monocytes. However, loss of a single SFK, Fgr or Lyn, reduced platelet‐mediated monocyte recruitment in vitro. This translated into a significant reduction in the burden of atherosclerotic disease in Fgr?/?/ApoE?/? or Lyn?/?/ApoE?/? animals. SFK signalling is not redundant in thrombo‐inflammatory vascular disease and individual SFK may represent targets for therapeutic intervention.  相似文献   

4.
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226?/? ApoE?/?) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE?/? mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.  相似文献   

5.
6.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

7.
Previous evidence has indicated a beneficial role for aldehyde dehydrogenase 2 (ALDH2) in suppressing atherosclerotic plaque progression and instability. However, the underlying mechanism remains somewhat elusive. This study was designed to examine the effect of ALDH2 deficiency on high-cholesterol diet-induced atherosclerotic plaque progression and plaque vulnerability in atherosclerosis-prone ApoE knockout (ApoE?/?) mice with a focus on foam cell formation in macrophages and senescence of vascular smooth muscle cells (VSMCs). Serum lipid profile, plaque progression, and plaque vulnerability were examined in ApoE?/? and ALDH2/ApoE double knockout (ALDH2?/?ApoE?/?) mice after high-cholesterol diet intake for 8 weeks. ALDH2 deficiency increased the serum levels of triglycerides while it decreased levels of total cholesterol and high-density lipoprotein cholesterol. Unexpectedly, ALDH2 deficiency reduced the plaque area by 58.9% and 37.5% in aorta and aortic sinus, respectively. Plaque instability was aggravated by ALDH2 deficiency along with the increased necrotic core size, decreased collagen content, thinner fibrous cap area, decreased VSMC content, and increased macrophage content. In atherosclerotic lesions, ALDH2 protein was located in both macrophages and VSMCs. Further results revealed downregulated ALDH2 expression in aorta of aged ApoE?/? mice compared with young mice. However, in vitro study suggested that ALDH2 expression was upregulated in bone marrow-derived macrophages (BMDMs) with an opposite effect in VSMCs following 80 μg/ml oxidized low-density lipoprotein (oxLDL) treatment. Interestingly, ALDH2 deficiency displayed little effect in oxLDL-induced foam cell formation from BMDMs, while ALDH2 knockdown by siRNA and ALDH2 overexpression by lentivirus infection promoted and retarded oxLDL-induced VSMC senescence, respectively. Mechanistically, ALDH2 mitigated oxLDL-induced overproduction of mitochondrial reactive oxygen species (mROS) and activation of downstream p53/p21/p16 pathway. Clearance of mROS by mitoTEMPO significantly reversed the promotive effect of ALDH2 knockdown on VSMC senescence. Taken together, our data revealed that ALDH2 deficiency suppressed atherosclerotic plaque area while facilitating plaque instability possibly through accelerating mROS-mediated VSMC senescence.This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   

8.

Objective

To propose and verify a hypothesis that miR-17-5p knockdown may mitigate atherosclerotic lesions using atherosclerotic ApoE?/? mice as serum microRNA-17-5p (miR-17-5p) is elevated in patients with atherosclerosis.

Results

The level of miR-17-5p was higher while the level of very low density lipoprotein receptor (VLDLR), a predicted target of miR-17-5p, was lower in the peripheral blood lymphocytes (PBLs) of atherosclerosis patients as compared with control PBLs. ApoE?/? mice fed with a high-cholesterol diet displayed marked atherosclerotic vascular lesions, which were ameliorated after treatment with antagomiR-17-5p. Moreover, the decreased VLDLR in atherosclerotic mice was partly restored when miR-17-5p was antagonized. Further, luciferase assay confirmed VLDLR as a direct target of miR-17-5p in vascular smooth muscle cells (VSMCs). In addition, the elevated expression of proprotein convertase subtilisin kexin 9 (PCSK9), a secreted protease that binds to and promotes VLDLR degradation, in the atherosclerotic mice was suppressed by antagomiR-17-5p.

Conclusions

A novel interaction between miR-17-5p and VLDLR is revealed and suggests that miR-17-5p may be a potential therapeutic target for AS.
  相似文献   

9.
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr?/? mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr?/? mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low‐fat diet, and insulin resistance after a high‐fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age‐enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age‐enhanced inflammatory response consisting of elevated production of CCL‐2, osteopontin, and IL‐6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.  相似文献   

10.
11.
Proximal intestinal enterocytes expresses both intestinal-fatty acid binding protein (IFABP; FABP2) and liver-FABP (LFABP; FABP1). These FABPs are thought to be important in the net uptake of dietary lipid from the intestinal lumen, however their specific and potentially unique functions in the enterocyte remain incompletely understood. We previously showed markedly divergent phenotypes in LFABP?/? vs. IFABP?/? mice fed high-fat diets, with the former becoming obese and the latter remaining lean relative to wild-type (WT) mice, supporting different functional roles for each protein. Interestingly, neither mouse model displayed increased fecal lipid concentration, raising the question of whether the presence of one FABP was sufficient to compensate for absence of the other. Here, we generated an LFABP and IFABP double knockout mouse (DKO) to determine whether simultaneous ablation would lead to fat malabsorption, and to further interrogate the individual vs. overlapping functions of these proteins. Male WT, IFABP?/?, LFABP?/?, and DKO mice were fed a low-fat (10 % kcal) or high-fat (45 % kcal) diet for 12 weeks. The body weights and fat mass of the DKO mice integrated those of the LFABP?/? and IFABP?/? single knockouts, supporting the notion that IFABP and LFABP have distinct functions in intestinal lipid assimilation that result in downstream alterations in systemic energy metabolism. Remarkably, no differences in fecal fat concentrations were found in the DKO compared to WT, revealing that the FABPs are not required for net intestinal uptake of dietary lipid.  相似文献   

12.
13.
Annexin A5 (AnxA5) exerts anti‐inflammatory, anticoagulant and anti‐apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE?/? mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE?/? mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti‐inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF‐α‐activated endothelial cell layer. In conclusion, short‐term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE?/? mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.  相似文献   

14.
15.

Background

Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response.

Methods

Human THP-1 macrophages and bone marrow-derived macrophages, from both wild-type C57BL/6 (WT) and apolipoprotein E null mice (ApoE?/?) were used to investigate the effect of liraglutide on the inflammatory response in vitro. In parallel, ApoE?/? mice were fed a high-fat (60% calories from fat) high-cholesterol (1%) diet for 8 weeks to induce atherosclerotic disease progression with/without daily 300 μg/kg liraglutide administration for the final 6 weeks. Macrophages were analysed for MΦ1 and MΦ2 macrophage markers by Western blotting, RT-qPCR, ELISA and flow cytometry. Atherosclerotic lesions in aortae from ApoE?/? mice were analysed by en face staining and monocyte and macrophage populations from bone marrow derived cells analysed by flow cytometry.

Results

Liraglutide decreased atherosclerotic lesion formation in ApoE?/? mice coincident with a reduction in pro-inflammatory and increased anti-inflammatory monocyte/macrophage populations in vivo. Liraglutide decreased IL-1beta in MΦ0 THP-1 macrophages and bone marrow-derived macrophages from WT mice and induced a significant increase in the MΦ2 surface marker mannose receptor in both MΦ0 and MΦ2 macrophages. Significant reduction in total lesion development was found with once daily 300 μg/kg liraglutide treatment in ApoE?/? mice. Interestingly, liraglutide inhibited disease progression at the iliac bifurcation suggesting that it retards the initiation and development of disease. These results corresponded to attenuated MΦ1 markers (CCR7, IL-6 and TNF-alpha), augmented MΦ2 cell markers (Arg-1, IL-10 and CD163) and finally decreased MΦ1-like monocytes and macrophages from bone marrow-derived cells.

Conclusions

This data supports a therapeutic role for liraglutide as an atheroprotective agent via modulating macrophage cell fate towards MΦ2 pro-resolving macrophages.
  相似文献   

16.
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE?/? mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE?/? mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE?/? mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.  相似文献   

17.
18.
The inflammation of adipose tissue is one of the most common secondary pathological changes in atherosclerosis, which in turn influences the process of atherosclerosis. Natriuretic peptides have been revealed important effect in regulating adipose metabolism. However, the relationship between natriuretic peptide receptor C and inflammation of adipose tissue in atherosclerosis remains unknown. This study aims to explore the effect natriuretic peptide receptor C exerts on the regulation of the adipose inflammation in atherosclerotic mice induced by western-type diet and its overlying mechanisms. To clarify the importance of NPRC of adipose inflammation in atherosclerotic mice, NPRC expression was measured in mice fed with chow diet and western-type diet for 12 weeks and we found a considerable increase in adipose tissue of atherosclerotic mice. Global NPRC knockout in mice was bred onto ApoE−/− mice to generate NPRC−/−ApoE−/− mice, which displayed remarked increase in browning of white adipose tissue and lipolysis of adipose tissue and decrease in adipose inflammation manifested by decreased macrophage invasion to form less CLS (crown-like structure), reduced oxidative stress and alleviated expression of TNFα, IL-6, IL-1β and MCP1, but increased expression of adiponectin in adipose tissue. Moreover, our study showed that white adipose tissue browning in NPRC−/−ApoE−/− atherosclerotic mice was associated with decreased inflammatory response through cAMP/PKA signalling activation. These results identify NPRC as a novel regulator for adipose inflammation in atherosclerotic mice by modulating white adipose tissue browning.  相似文献   

19.
Paracrine cell-to-cell interactions are crucial events during atherogenesis, however, little is known on the role of gap junctional communication during this process. We recently demonstrated increased expression of Cx43 in intimal smooth muscle cells and in a subset of endothelial cells covering the shoulder of atherosclerotic plaques. The purpose of this study was to examine the role of Cx43 in the development of atherosclerosis in vivo. Atherosclerosis-susceptible LDL receptor-deficient (LDLR?/?) mice were intercrossed with mice heterozygous for Cx43 (Cx43+/?mice). Male mice with normal (Cx43+/+LDLR?/?) or reduced (Cx43+/?LDLR?/?) Cx43 level of 10 weeks old were fed a cholesterol-rich diet (1.25%) for 14 weeks. Both groups of mice showed similar increases in serum lipids and body weight. Interestingly, the progression of atherosclerosis was reduced by 50% (P < 0.01) in the thoraco-abdominal aorta and in the aortic roots of Cx43+/?LDLR?/?mice compared with Cx43+/+LDLR?/?littermate controls. In addition, atheroma in Cx43+/?LDLR?/?mice contained fewer inflammatory cells and exhibited thicker fibrous caps with more collagen and smooth muscle cells, important features associated, in human, with stable atherosclerotic lesions. Thus, reducing Cx43 expression in mice provides beneficial effects on both the progression and composition of the atherosclerotic lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号